Loading…
Constructing multispecies biofilms with defined compositions by sequential deposition of bacteria
Rationally-assembled multispecies biofilms could benefit applied processes including mixed waste biodegradation and drug biosynthesis by combining complementary metabolic pathways into single functional communities. We hypothesized that the cellular composition of mature multispecies biofilms could...
Saved in:
Published in: | Applied microbiology and biotechnology 2010-05, Vol.86 (6), p.1941-1946 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rationally-assembled multispecies biofilms could benefit applied processes including mixed waste biodegradation and drug biosynthesis by combining complementary metabolic pathways into single functional communities. We hypothesized that the cellular composition of mature multispecies biofilms could be manipulated by controlling the number of each cell type present on newly colonized surfaces. To test this idea, we developed a method for attaching specific numbers of bacteria to a flow cell by recirculating cell suspensions. Initial work revealed a nonlinear relationship between suspension cell density and areal density when two strains of Escherichia coli were simultaneously recirculated; in contrast, sequential recirculation resulted in a predictable deposition of cell numbers. Quantitative analysis of cell distributions in 48-h biofilms comprised of the E. coli strains demonstrated a strong relationship between their distribution at the substratum and their presence in mature biofilms. Sequentially depositing E. coli with either Pseudomonas aeruginosa or Bacillus subtilis determined small but reproducible differences in the areal density of the second microorganism recirculated relative to its areal density when recirculated alone. Overall, the presented method offers a simple and reproducible way to construct multispecies biofilms with defined compositions for biocatalytic processes. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-010-2473-y |