Loading…
Circularity error evaluation: Theory and algorithm
Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based...
Saved in:
Published in: | Precision engineering 1999-07, Vol.23 (3), p.164-176 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 176 |
container_issue | 3 |
container_start_page | 164 |
container_title | Precision engineering |
container_volume | 23 |
creator | Wang, M. Cheraghi, S.Hossein Masud, Abu S.M. |
description | Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems. |
doi_str_mv | 10.1016/S0141-6359(99)00006-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_744629810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141635999000069</els_id><sourcerecordid>744629810</sourcerecordid><originalsourceid>FETCH-LOGICAL-e270t-db944218ffc2b4e994d1a531699154c9704d56f3529685e077cfdf45c6a63ab43</originalsourceid><addsrcrecordid>eNo90EtLAzEQwPEgCtbqRxD2IKiH1bw22fEiUnxBwYP1HNLsxEa2uzXZLfTbu33gXObyYxj-hFwyescoU_eflEmWK1HADcAtHUblcERGrNQi50LzYzL6J6fkLKWfweiSyhHhkxBdX9sYuk2GMbYxw7Wte9uFtnnIZgts4yazTZXZ-rsd1GJ5Tk68rRNeHPaYfL08zyZv-fTj9X3yNM2Ra9rl1Ryk5Kz03vG5RABZMVsIpgBYIR1oKqtCeVFwUGWBVGvnKy8Lp6wSdi7FmFzv765i-9tj6swyJId1bRts-2S0lIpDyeggrw7SJmdrH23jQjKrGJY2bsy2A9ByYI97hsPX64DRJBewcViFiK4zVRsMo2bb1Oyamm0wA2B2TQ2IPyMxaS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744629810</pqid></control><display><type>article</type><title>Circularity error evaluation: Theory and algorithm</title><source>ScienceDirect Freedom Collection</source><creator>Wang, M. ; Cheraghi, S.Hossein ; Masud, Abu S.M.</creator><creatorcontrib>Wang, M. ; Cheraghi, S.Hossein ; Masud, Abu S.M.</creatorcontrib><description>Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems.</description><identifier>ISSN: 0141-6359</identifier><identifier>EISSN: 1873-2372</identifier><identifier>DOI: 10.1016/S0141-6359(99)00006-9</identifier><identifier>CODEN: PREGDL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Algorithms ; Applied sciences ; Circularity ; Computer simulation ; Computer software ; Exact sciences and technology ; Industrial metrology. Testing ; Mechanical engineering. Machine design ; Mechanical variables measurement ; Minimum radial separation ; Nonlinear equations ; Optimization ; Problem solving</subject><ispartof>Precision engineering, 1999-07, Vol.23 (3), p.164-176</ispartof><rights>1999 Elsevier Science Inc.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1873908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, M.</creatorcontrib><creatorcontrib>Cheraghi, S.Hossein</creatorcontrib><creatorcontrib>Masud, Abu S.M.</creatorcontrib><title>Circularity error evaluation: Theory and algorithm</title><title>Precision engineering</title><description>Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circularity</subject><subject>Computer simulation</subject><subject>Computer software</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical variables measurement</subject><subject>Minimum radial separation</subject><subject>Nonlinear equations</subject><subject>Optimization</subject><subject>Problem solving</subject><issn>0141-6359</issn><issn>1873-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo90EtLAzEQwPEgCtbqRxD2IKiH1bw22fEiUnxBwYP1HNLsxEa2uzXZLfTbu33gXObyYxj-hFwyescoU_eflEmWK1HADcAtHUblcERGrNQi50LzYzL6J6fkLKWfweiSyhHhkxBdX9sYuk2GMbYxw7Wte9uFtnnIZgts4yazTZXZ-rsd1GJ5Tk68rRNeHPaYfL08zyZv-fTj9X3yNM2Ra9rl1Ryk5Kz03vG5RABZMVsIpgBYIR1oKqtCeVFwUGWBVGvnKy8Lp6wSdi7FmFzv765i-9tj6swyJId1bRts-2S0lIpDyeggrw7SJmdrH23jQjKrGJY2bsy2A9ByYI97hsPX64DRJBewcViFiK4zVRsMo2bb1Oyamm0wA2B2TQ2IPyMxaS4</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Wang, M.</creator><creator>Cheraghi, S.Hossein</creator><creator>Masud, Abu S.M.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>7TC</scope></search><sort><creationdate>19990701</creationdate><title>Circularity error evaluation: Theory and algorithm</title><author>Wang, M. ; Cheraghi, S.Hossein ; Masud, Abu S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e270t-db944218ffc2b4e994d1a531699154c9704d56f3529685e077cfdf45c6a63ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circularity</topic><topic>Computer simulation</topic><topic>Computer software</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical variables measurement</topic><topic>Minimum radial separation</topic><topic>Nonlinear equations</topic><topic>Optimization</topic><topic>Problem solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, M.</creatorcontrib><creatorcontrib>Cheraghi, S.Hossein</creatorcontrib><creatorcontrib>Masud, Abu S.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Precision engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, M.</au><au>Cheraghi, S.Hossein</au><au>Masud, Abu S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circularity error evaluation: Theory and algorithm</atitle><jtitle>Precision engineering</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>23</volume><issue>3</issue><spage>164</spage><epage>176</epage><pages>164-176</pages><issn>0141-6359</issn><eissn>1873-2372</eissn><coden>PREGDL</coden><abstract>Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0141-6359(99)00006-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-6359 |
ispartof | Precision engineering, 1999-07, Vol.23 (3), p.164-176 |
issn | 0141-6359 1873-2372 |
language | eng |
recordid | cdi_proquest_miscellaneous_744629810 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Applied sciences Circularity Computer simulation Computer software Exact sciences and technology Industrial metrology. Testing Mechanical engineering. Machine design Mechanical variables measurement Minimum radial separation Nonlinear equations Optimization Problem solving |
title | Circularity error evaluation: Theory and algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circularity%20error%20evaluation:%20Theory%20and%20algorithm&rft.jtitle=Precision%20engineering&rft.au=Wang,%20M.&rft.date=1999-07-01&rft.volume=23&rft.issue=3&rft.spage=164&rft.epage=176&rft.pages=164-176&rft.issn=0141-6359&rft.eissn=1873-2372&rft.coden=PREGDL&rft_id=info:doi/10.1016/S0141-6359(99)00006-9&rft_dat=%3Cproquest_pasca%3E744629810%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e270t-db944218ffc2b4e994d1a531699154c9704d56f3529685e077cfdf45c6a63ab43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744629810&rft_id=info:pmid/&rfr_iscdi=true |