Loading…

Circularity error evaluation: Theory and algorithm

Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based...

Full description

Saved in:
Bibliographic Details
Published in:Precision engineering 1999-07, Vol.23 (3), p.164-176
Main Authors: Wang, M., Cheraghi, S.Hossein, Masud, Abu S.M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 176
container_issue 3
container_start_page 164
container_title Precision engineering
container_volume 23
creator Wang, M.
Cheraghi, S.Hossein
Masud, Abu S.M.
description Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems.
doi_str_mv 10.1016/S0141-6359(99)00006-9
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_744629810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141635999000069</els_id><sourcerecordid>744629810</sourcerecordid><originalsourceid>FETCH-LOGICAL-e270t-db944218ffc2b4e994d1a531699154c9704d56f3529685e077cfdf45c6a63ab43</originalsourceid><addsrcrecordid>eNo90EtLAzEQwPEgCtbqRxD2IKiH1bw22fEiUnxBwYP1HNLsxEa2uzXZLfTbu33gXObyYxj-hFwyescoU_eflEmWK1HADcAtHUblcERGrNQi50LzYzL6J6fkLKWfweiSyhHhkxBdX9sYuk2GMbYxw7Wte9uFtnnIZgts4yazTZXZ-rsd1GJ5Tk68rRNeHPaYfL08zyZv-fTj9X3yNM2Ra9rl1Ryk5Kz03vG5RABZMVsIpgBYIR1oKqtCeVFwUGWBVGvnKy8Lp6wSdi7FmFzv765i-9tj6swyJId1bRts-2S0lIpDyeggrw7SJmdrH23jQjKrGJY2bsy2A9ByYI97hsPX64DRJBewcViFiK4zVRsMo2bb1Oyamm0wA2B2TQ2IPyMxaS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744629810</pqid></control><display><type>article</type><title>Circularity error evaluation: Theory and algorithm</title><source>ScienceDirect Freedom Collection</source><creator>Wang, M. ; Cheraghi, S.Hossein ; Masud, Abu S.M.</creator><creatorcontrib>Wang, M. ; Cheraghi, S.Hossein ; Masud, Abu S.M.</creatorcontrib><description>Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems.</description><identifier>ISSN: 0141-6359</identifier><identifier>EISSN: 1873-2372</identifier><identifier>DOI: 10.1016/S0141-6359(99)00006-9</identifier><identifier>CODEN: PREGDL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Algorithms ; Applied sciences ; Circularity ; Computer simulation ; Computer software ; Exact sciences and technology ; Industrial metrology. Testing ; Mechanical engineering. Machine design ; Mechanical variables measurement ; Minimum radial separation ; Nonlinear equations ; Optimization ; Problem solving</subject><ispartof>Precision engineering, 1999-07, Vol.23 (3), p.164-176</ispartof><rights>1999 Elsevier Science Inc.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1873908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, M.</creatorcontrib><creatorcontrib>Cheraghi, S.Hossein</creatorcontrib><creatorcontrib>Masud, Abu S.M.</creatorcontrib><title>Circularity error evaluation: Theory and algorithm</title><title>Precision engineering</title><description>Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circularity</subject><subject>Computer simulation</subject><subject>Computer software</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical variables measurement</subject><subject>Minimum radial separation</subject><subject>Nonlinear equations</subject><subject>Optimization</subject><subject>Problem solving</subject><issn>0141-6359</issn><issn>1873-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo90EtLAzEQwPEgCtbqRxD2IKiH1bw22fEiUnxBwYP1HNLsxEa2uzXZLfTbu33gXObyYxj-hFwyescoU_eflEmWK1HADcAtHUblcERGrNQi50LzYzL6J6fkLKWfweiSyhHhkxBdX9sYuk2GMbYxw7Wte9uFtnnIZgts4yazTZXZ-rsd1GJ5Tk68rRNeHPaYfL08zyZv-fTj9X3yNM2Ra9rl1Ryk5Kz03vG5RABZMVsIpgBYIR1oKqtCeVFwUGWBVGvnKy8Lp6wSdi7FmFzv765i-9tj6swyJId1bRts-2S0lIpDyeggrw7SJmdrH23jQjKrGJY2bsy2A9ByYI97hsPX64DRJBewcViFiK4zVRsMo2bb1Oyamm0wA2B2TQ2IPyMxaS4</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Wang, M.</creator><creator>Cheraghi, S.Hossein</creator><creator>Masud, Abu S.M.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>7TC</scope></search><sort><creationdate>19990701</creationdate><title>Circularity error evaluation: Theory and algorithm</title><author>Wang, M. ; Cheraghi, S.Hossein ; Masud, Abu S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e270t-db944218ffc2b4e994d1a531699154c9704d56f3529685e077cfdf45c6a63ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circularity</topic><topic>Computer simulation</topic><topic>Computer software</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical variables measurement</topic><topic>Minimum radial separation</topic><topic>Nonlinear equations</topic><topic>Optimization</topic><topic>Problem solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, M.</creatorcontrib><creatorcontrib>Cheraghi, S.Hossein</creatorcontrib><creatorcontrib>Masud, Abu S.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Precision engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, M.</au><au>Cheraghi, S.Hossein</au><au>Masud, Abu S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circularity error evaluation: Theory and algorithm</atitle><jtitle>Precision engineering</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>23</volume><issue>3</issue><spage>164</spage><epage>176</epage><pages>164-176</pages><issn>0141-6359</issn><eissn>1873-2372</eissn><coden>PREGDL</coden><abstract>Many procedures for the evaluation of circularity error based on different criteria have been developed. The procedures that are based on the minimum radial separation criterion are either too complex or lack an algorithmic approach to find optimal solution. This paper presents an optimization-based technique to find the value of circularity error based on the minimum radial separation criterion. The problem is formulated as a nonlinear optimization problem. Based on the developed necessary and sufficient conditions a generalized nonlinear optimization procedure is presented. The performance of the developed procedure is analyzed for different size problems generated using a simulation program. Results indicate that the procedure is accurate and very efficient in solving large size real life problems.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0141-6359(99)00006-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-6359
ispartof Precision engineering, 1999-07, Vol.23 (3), p.164-176
issn 0141-6359
1873-2372
language eng
recordid cdi_proquest_miscellaneous_744629810
source ScienceDirect Freedom Collection
subjects Algorithms
Applied sciences
Circularity
Computer simulation
Computer software
Exact sciences and technology
Industrial metrology. Testing
Mechanical engineering. Machine design
Mechanical variables measurement
Minimum radial separation
Nonlinear equations
Optimization
Problem solving
title Circularity error evaluation: Theory and algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circularity%20error%20evaluation:%20Theory%20and%20algorithm&rft.jtitle=Precision%20engineering&rft.au=Wang,%20M.&rft.date=1999-07-01&rft.volume=23&rft.issue=3&rft.spage=164&rft.epage=176&rft.pages=164-176&rft.issn=0141-6359&rft.eissn=1873-2372&rft.coden=PREGDL&rft_id=info:doi/10.1016/S0141-6359(99)00006-9&rft_dat=%3Cproquest_pasca%3E744629810%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e270t-db944218ffc2b4e994d1a531699154c9704d56f3529685e077cfdf45c6a63ab43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744629810&rft_id=info:pmid/&rfr_iscdi=true