Loading…

Subgrid scale variance and dissipation of a scalar field in large eddy simulations

Subgrid scale (SGS) variance of a scalar field in large eddy simulations is only properly defined in relation to a probability density function. This solves a reported problem in the variance definition [Cook and Riley, Phys. Fluids 6, 2868 (1994); Cook, Riley, and Kosály, Combust. Flame 109, 332 (1...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2001-06, Vol.13 (6), p.1748-1754
Main Authors: Jiménez, C., Ducros, F., Cuenot, B., Bédat, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Subgrid scale (SGS) variance of a scalar field in large eddy simulations is only properly defined in relation to a probability density function. This solves a reported problem in the variance definition [Cook and Riley, Phys. Fluids 6, 2868 (1994); Cook, Riley, and Kosály, Combust. Flame 109, 332 (1997)] and allows to write a simple evolution equation for the scalar variance. This equation shows that a recently proposed model for scalar dissipation in terms of the large-scale gradients [Pierce and Moin, Phys. Fluids 10, 3041 (1998)] implies dissipation and production canceling out, preventing variance decay and complete mixing at SGS level. An alternative simple model for dissipation in terms of a SGS mixing characteristic time is proposed and tested here.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.1366668