Loading…

Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A–X) emission

In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by...

Full description

Saved in:
Bibliographic Details
Published in:Plasma sources science & technology 2010-02, Vol.19 (1), p.015016-015016 (7)
Main Authors: Bruggeman, Peter, Iza, Felipe, Guns, Peter, Lauwers, Daniel, Kong, Michael G, Gonzalvo, Yolanda Aranda, Leys, Christophe, Schram, Daan C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-2c44be798201e221cc305422e92561ea4e4fd53ad53fdaac756528d1b5c37c553
cites cdi_FETCH-LOGICAL-c491t-2c44be798201e221cc305422e92561ea4e4fd53ad53fdaac756528d1b5c37c553
container_end_page 015016 (7)
container_issue 1
container_start_page 015016
container_title Plasma sources science & technology
container_volume 19
creator Bruggeman, Peter
Iza, Felipe
Guns, Peter
Lauwers, Daniel
Kong, Michael G
Gonzalvo, Yolanda Aranda
Leys, Christophe
Schram, Daan C
description In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H2O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J < = 7) are thermalized and representative for the gas temperature.
doi_str_mv 10.1088/0963-0252/19/1/015016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744700236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744700236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-2c44be798201e221cc305422e92561ea4e4fd53ad53fdaac756528d1b5c37c553</originalsourceid><addsrcrecordid>eNqNkc9q3DAQxkVpodu0j1DQpbSBuquRJf85hpA2hUAuDeQmtPI4q2LLrkZLyK3vkDfMk0Rmw15aQg5iQPP7vpnhY-wjiG8gmmYt2qoshNRyDe0a1gK0gOoVW0FZQVHpVr9mqwPzlr0j-i0EQCPrFbs_G9ClOAXv-J8dBrf14YZPPb88_3JyzDd3_NYmjNwHbtM40bzFmNE5ItEuIp8HS6MlbkPHfaLM9cNig3wKPG2R3-RmwnHGaNMi6DDbjT7Y5DOR_ZdBD3_vr485jp4o_75nb3o7EH54qkfs6vvZr9Pz4uLyx8_Tk4vCqRZSIZ1SG6zbRgpAKcG5UmglJbZSV4BWoeo7Xdr8-s5aV-tKy6aDjXZl7bQuj9jnve8cp3w7JZMXcDgMNuC0I1MrVQshy-oFZCl1rRVkUu9JFyeiiL2Zox9tvDMgzJKWWZIwSxIGWgNmn1bWfXqaYMnZoY82OE8HsZQKVCMW7uue89N86P7X0sxdn3HxL_78Jo92-bH9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743257541</pqid></control><display><type>article</type><title>Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A–X) emission</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Bruggeman, Peter ; Iza, Felipe ; Guns, Peter ; Lauwers, Daniel ; Kong, Michael G ; Gonzalvo, Yolanda Aranda ; Leys, Christophe ; Schram, Daan C</creator><creatorcontrib>Bruggeman, Peter ; Iza, Felipe ; Guns, Peter ; Lauwers, Daniel ; Kong, Michael G ; Gonzalvo, Yolanda Aranda ; Leys, Christophe ; Schram, Daan C</creatorcontrib><description>In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H2O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J &lt; = 7) are thermalized and representative for the gas temperature.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/0963-0252/19/1/015016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electric discharges ; Exact sciences and technology ; Glow; corona ; Optical (ultraviolet, visible, infrared) measurements ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma diagnostic techniques and instrumentation</subject><ispartof>Plasma sources science &amp; technology, 2010-02, Vol.19 (1), p.015016-015016 (7)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-2c44be798201e221cc305422e92561ea4e4fd53ad53fdaac756528d1b5c37c553</citedby><cites>FETCH-LOGICAL-c491t-2c44be798201e221cc305422e92561ea4e4fd53ad53fdaac756528d1b5c37c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22414806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruggeman, Peter</creatorcontrib><creatorcontrib>Iza, Felipe</creatorcontrib><creatorcontrib>Guns, Peter</creatorcontrib><creatorcontrib>Lauwers, Daniel</creatorcontrib><creatorcontrib>Kong, Michael G</creatorcontrib><creatorcontrib>Gonzalvo, Yolanda Aranda</creatorcontrib><creatorcontrib>Leys, Christophe</creatorcontrib><creatorcontrib>Schram, Daan C</creatorcontrib><title>Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A–X) emission</title><title>Plasma sources science &amp; technology</title><description>In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H2O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J &lt; = 7) are thermalized and representative for the gas temperature.</description><subject>Electric discharges</subject><subject>Exact sciences and technology</subject><subject>Glow; corona</subject><subject>Optical (ultraviolet, visible, infrared) measurements</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma diagnostic techniques and instrumentation</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkc9q3DAQxkVpodu0j1DQpbSBuquRJf85hpA2hUAuDeQmtPI4q2LLrkZLyK3vkDfMk0Rmw15aQg5iQPP7vpnhY-wjiG8gmmYt2qoshNRyDe0a1gK0gOoVW0FZQVHpVr9mqwPzlr0j-i0EQCPrFbs_G9ClOAXv-J8dBrf14YZPPb88_3JyzDd3_NYmjNwHbtM40bzFmNE5ItEuIp8HS6MlbkPHfaLM9cNig3wKPG2R3-RmwnHGaNMi6DDbjT7Y5DOR_ZdBD3_vr485jp4o_75nb3o7EH54qkfs6vvZr9Pz4uLyx8_Tk4vCqRZSIZ1SG6zbRgpAKcG5UmglJbZSV4BWoeo7Xdr8-s5aV-tKy6aDjXZl7bQuj9jnve8cp3w7JZMXcDgMNuC0I1MrVQshy-oFZCl1rRVkUu9JFyeiiL2Zox9tvDMgzJKWWZIwSxIGWgNmn1bWfXqaYMnZoY82OE8HsZQKVCMW7uue89N86P7X0sxdn3HxL_78Jo92-bH9</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Bruggeman, Peter</creator><creator>Iza, Felipe</creator><creator>Guns, Peter</creator><creator>Lauwers, Daniel</creator><creator>Kong, Michael G</creator><creator>Gonzalvo, Yolanda Aranda</creator><creator>Leys, Christophe</creator><creator>Schram, Daan C</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20100201</creationdate><title>Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A–X) emission</title><author>Bruggeman, Peter ; Iza, Felipe ; Guns, Peter ; Lauwers, Daniel ; Kong, Michael G ; Gonzalvo, Yolanda Aranda ; Leys, Christophe ; Schram, Daan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-2c44be798201e221cc305422e92561ea4e4fd53ad53fdaac756528d1b5c37c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Electric discharges</topic><topic>Exact sciences and technology</topic><topic>Glow; corona</topic><topic>Optical (ultraviolet, visible, infrared) measurements</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma diagnostic techniques and instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruggeman, Peter</creatorcontrib><creatorcontrib>Iza, Felipe</creatorcontrib><creatorcontrib>Guns, Peter</creatorcontrib><creatorcontrib>Lauwers, Daniel</creatorcontrib><creatorcontrib>Kong, Michael G</creatorcontrib><creatorcontrib>Gonzalvo, Yolanda Aranda</creatorcontrib><creatorcontrib>Leys, Christophe</creatorcontrib><creatorcontrib>Schram, Daan C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruggeman, Peter</au><au>Iza, Felipe</au><au>Guns, Peter</au><au>Lauwers, Daniel</au><au>Kong, Michael G</au><au>Gonzalvo, Yolanda Aranda</au><au>Leys, Christophe</au><au>Schram, Daan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A–X) emission</atitle><jtitle>Plasma sources science &amp; technology</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>19</volume><issue>1</issue><spage>015016</spage><epage>015016 (7)</epage><pages>015016-015016 (7)</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><abstract>In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H2O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J &lt; = 7) are thermalized and representative for the gas temperature.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0963-0252/19/1/015016</doi></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2010-02, Vol.19 (1), p.015016-015016 (7)
issn 0963-0252
1361-6595
language eng
recordid cdi_proquest_miscellaneous_744700236
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Electric discharges
Exact sciences and technology
Glow
corona
Optical (ultraviolet, visible, infrared) measurements
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma diagnostic techniques and instrumentation
title Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A–X) emission
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20quenching%20of%20OH(A)%20by%20water%20in%20atmospheric%20pressure%20plasmas%20and%20its%20influence%20on%20the%20gas%20temperature%20determination%20by%20OH(A%E2%80%93X)%20emission&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Bruggeman,%20Peter&rft.date=2010-02-01&rft.volume=19&rft.issue=1&rft.spage=015016&rft.epage=015016%20(7)&rft.pages=015016-015016%20(7)&rft.issn=0963-0252&rft.eissn=1361-6595&rft_id=info:doi/10.1088/0963-0252/19/1/015016&rft_dat=%3Cproquest_cross%3E744700236%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-2c44be798201e221cc305422e92561ea4e4fd53ad53fdaac756528d1b5c37c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=743257541&rft_id=info:pmid/&rfr_iscdi=true