Loading…

Molecular characterization of two novel esterase genes from carmine spider mite, Tetranychus cinnabarinus (Acarina: Tetranychidae)

Two novel esterase complementary DNAs were identified and cloned from the insecticide-susceptible strain of Tetranychus cinnabarinus (Boisduval) (Acarina: Tetranychidae), which were designated as TCE1 and TCE2, respectively. The cDNA of TCE1 gene contained an open reading frame (ORF) of 1701 bp enco...

Full description

Saved in:
Bibliographic Details
Published in:Insect science 2010-04, Vol.17 (2), p.91-100
Main Authors: Sun, Wei, Xue, Chuan-Hua, He, Lin, Lu, Wen-Cai, Li, Ming, Cao, Xiao-Fang, Zhao, Zhi-Mo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two novel esterase complementary DNAs were identified and cloned from the insecticide-susceptible strain of Tetranychus cinnabarinus (Boisduval) (Acarina: Tetranychidae), which were designated as TCE1 and TCE2, respectively. The cDNA of TCE1 gene contained an open reading frame (ORF) of 1701 bp encoding 567 amino acids, and a predicted molecular weight of 62.75 kDa, the cDNA of TCE2 contained an ORF of 1680 bp encoding 560 amino acids, and a predicted molecular weight of 63.14 kDa. TCE1 and TCE2 were submitted to GenBank, accession number EU130461 and EU130462. The well-conserved sequence motif, GXSXG, used as a signature pattern in the esterase family are present in both TCE1 and TCE2 (GQSAG in TCE1, whereas GESAG in TCE2), indicating that these two genes are predicted to be esterases. Comparison of the deduced amino acid sequence with the published mite esterase sequence coming from Boophilus microplus showed that TCE1 shares 33.98% identity and TCE2 shares 33.46% identity. TCE1 and TCE2 share 46.4% identity. Quantitative real-time polymerase chain reaction revealed that expression level of the TCE2 gene was relatively higher than that of the TCE1 in all instars examined except the protonymph, and the expression level of these two esterase genes in adults of T. cinnabarinus was significantly higher than that in any other instars, respectively. T. cinnabarinus is an important agricultural mite pest and esterases are important in the metabolisms of insects and mites; the genomic information obtained in this study will contribute to esterase molecular biological study on mite pest species.
ISSN:1672-9609
1744-7917
DOI:10.1111/j.1744-7917.2009.01302.x