Loading…
RNA interference by nanofiber-based siRNA delivery system
SiRNA delivery has found useful applications particularly as therapeutic agents against genetic diseases. Currently, the delivery of siRNA typically takes the form of nanoparticles. In order to expand the applications of these potent but labile molecules for long-term use required by tissue engineer...
Saved in:
Published in: | Journal of controlled release 2010-06, Vol.144 (2), p.203-212 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | SiRNA delivery has found useful applications particularly as therapeutic agents against genetic diseases. Currently, the delivery of siRNA typically takes the form of nanoparticles. In order to expand the applications of these potent but labile molecules for long-term use required by tissue engineering and regenerative medicine, alternative delivery vehicles are required. This work presents a scaffold-mediated approach to siRNA delivery. By encapsulating siRNA within polycaprolactone (PCL) nanofibers (300–400
nm in diameter) controlled release of intact siRNA could be achieved for at least 28
days under physiological conditions. The successful transfection of HEK 293 cells with GAPDH siRNA released from fibrous scaffolds at day 5, 15 and 30 demonstrated that the encapsulated molecules remained bioactive throughout the period of sustained release, providing silencing efficiency of 61–81% that was comparable to conventional siRNA transfection. Direct seeding of cells on these biofunctional scaffolds, with and without transfection reagent, demonstrated enhanced cellular uptake and efficient GAPDH gene-silencing. This work demonstrates the potential of nanofibrous scaffold-mediated siRNA delivery for long-term gene-silencing applications. The combination of topographical features provided by nanofibrous scaffolds may provide synergistic contact guidance and biochemical signals to mediate and support cellular development in regenerative medicine.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2010.02.003 |