Loading…

An outdoor navigation system using GPS and inertial platform

The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2002-06, Vol.7 (2), p.134-142
Main Authors: Panzieri, S., Pascucci, F., Ulivi, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3
cites cdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3
container_end_page 142
container_issue 2
container_start_page 134
container_title IEEE/ASME transactions on mechatronics
container_volume 7
creator Panzieri, S.
Pascucci, F.
Ulivi, G.
description The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem.
doi_str_mv 10.1109/TMECH.2002.1011250
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_745649488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1011250</ieee_id><sourcerecordid>745649488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</originalsourceid><addsrcrecordid>eNqNksFqGzEQhpfQQtK0L9BelkLSXtadkUa7K8glmDQppLTQBHITsiwFhbXkSLuBvH3l2tDSQzA6SIdvvpkRf1W9R5ghgvxy8_1ifjVjAGyGgMgEHFRHKAkbQLp7Vd7Q84aIi8PqTc4PAEAFPKrOzkMdp3EZY6qDfvL3evQx1Pk5j3ZVT9mH-_ry569ah2Xtg02j10O9HvToYlq9rV47PWT7bncfV7dfL27mV831j8tv8_PrxgjEsTHUt4w0tP2SgeSOJFvIBQGyXgq94Ch1uzTWOM61cXYBzvSdtEDSMOik48fVp613neLjZPOoVj4bOww62Dhl1ZFoSVLfF_L0RbJ07ARIsQdIhK3Yw9i1rEwKe4K0af35RRDbDolzErKgH_9DH-KUQvlr1ZcBy8qcF4htIZNizsk6tU5-pdOzQlCbdKg_6VCbdKhdOkrRyc6ss9GDSzoYn_9W8q4c2RXuw5bz1tp_xFvLbyxtv44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884494833</pqid></control><display><type>article</type><title>An outdoor navigation system using GPS and inertial platform</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Panzieri, S. ; Pascucci, F. ; Ulivi, G.</creator><creatorcontrib>Panzieri, S. ; Pascucci, F. ; Ulivi, G.</creatorcontrib><description>The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2002.1011250</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Encoding ; Exact sciences and technology ; Filtering algorithms ; Fuses ; Geographic information systems ; Global Positioning System ; Image coding ; Information filtering ; Information filters ; Kalman filtering ; Kalman filters ; Localization ; Microsensors ; Mobile robots ; Navigation ; Navigation systems ; Position (location) ; Robot sensing systems ; Robotics ; Robots ; Satellite navigation systems ; Sensor data fusion ; Sensor fusion</subject><ispartof>IEEE/ASME transactions on mechatronics, 2002-06, Vol.7 (2), p.134-142</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</citedby><cites>FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1011250$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13737397$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Panzieri, S.</creatorcontrib><creatorcontrib>Pascucci, F.</creatorcontrib><creatorcontrib>Ulivi, G.</creatorcontrib><title>An outdoor navigation system using GPS and inertial platform</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Filtering algorithms</subject><subject>Fuses</subject><subject>Geographic information systems</subject><subject>Global Positioning System</subject><subject>Image coding</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Microsensors</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Position (location)</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Satellite navigation systems</subject><subject>Sensor data fusion</subject><subject>Sensor fusion</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNksFqGzEQhpfQQtK0L9BelkLSXtadkUa7K8glmDQppLTQBHITsiwFhbXkSLuBvH3l2tDSQzA6SIdvvpkRf1W9R5ghgvxy8_1ifjVjAGyGgMgEHFRHKAkbQLp7Vd7Q84aIi8PqTc4PAEAFPKrOzkMdp3EZY6qDfvL3evQx1Pk5j3ZVT9mH-_ry569ah2Xtg02j10O9HvToYlq9rV47PWT7bncfV7dfL27mV831j8tv8_PrxgjEsTHUt4w0tP2SgeSOJFvIBQGyXgq94Ch1uzTWOM61cXYBzvSdtEDSMOik48fVp613neLjZPOoVj4bOww62Dhl1ZFoSVLfF_L0RbJ07ARIsQdIhK3Yw9i1rEwKe4K0af35RRDbDolzErKgH_9DH-KUQvlr1ZcBy8qcF4htIZNizsk6tU5-pdOzQlCbdKg_6VCbdKhdOkrRyc6ss9GDSzoYn_9W8q4c2RXuw5bz1tp_xFvLbyxtv44</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Panzieri, S.</creator><creator>Pascucci, F.</creator><creator>Ulivi, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope><scope>KR7</scope><scope>7U5</scope><scope>7TC</scope></search><sort><creationdate>20020601</creationdate><title>An outdoor navigation system using GPS and inertial platform</title><author>Panzieri, S. ; Pascucci, F. ; Ulivi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Filtering algorithms</topic><topic>Fuses</topic><topic>Geographic information systems</topic><topic>Global Positioning System</topic><topic>Image coding</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Microsensors</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Position (location)</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Satellite navigation systems</topic><topic>Sensor data fusion</topic><topic>Sensor fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panzieri, S.</creatorcontrib><creatorcontrib>Pascucci, F.</creatorcontrib><creatorcontrib>Ulivi, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panzieri, S.</au><au>Pascucci, F.</au><au>Ulivi, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An outdoor navigation system using GPS and inertial platform</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>7</volume><issue>2</issue><spage>134</spage><epage>142</epage><pages>134-142</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMECH.2002.1011250</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2002-06, Vol.7 (2), p.134-142
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_miscellaneous_745649488
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Control theory. Systems
Encoding
Exact sciences and technology
Filtering algorithms
Fuses
Geographic information systems
Global Positioning System
Image coding
Information filtering
Information filters
Kalman filtering
Kalman filters
Localization
Microsensors
Mobile robots
Navigation
Navigation systems
Position (location)
Robot sensing systems
Robotics
Robots
Satellite navigation systems
Sensor data fusion
Sensor fusion
title An outdoor navigation system using GPS and inertial platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20outdoor%20navigation%20system%20using%20GPS%20and%20inertial%20platform&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Panzieri,%20S.&rft.date=2002-06-01&rft.volume=7&rft.issue=2&rft.spage=134&rft.epage=142&rft.pages=134-142&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2002.1011250&rft_dat=%3Cproquest_ieee_%3E745649488%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884494833&rft_id=info:pmid/&rft_ieee_id=1011250&rfr_iscdi=true