Loading…
An outdoor navigation system using GPS and inertial platform
The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2002-06, Vol.7 (2), p.134-142 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3 |
container_end_page | 142 |
container_issue | 2 |
container_start_page | 134 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 7 |
creator | Panzieri, S. Pascucci, F. Ulivi, G. |
description | The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem. |
doi_str_mv | 10.1109/TMECH.2002.1011250 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_745649488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1011250</ieee_id><sourcerecordid>745649488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</originalsourceid><addsrcrecordid>eNqNksFqGzEQhpfQQtK0L9BelkLSXtadkUa7K8glmDQppLTQBHITsiwFhbXkSLuBvH3l2tDSQzA6SIdvvpkRf1W9R5ghgvxy8_1ifjVjAGyGgMgEHFRHKAkbQLp7Vd7Q84aIi8PqTc4PAEAFPKrOzkMdp3EZY6qDfvL3evQx1Pk5j3ZVT9mH-_ry569ah2Xtg02j10O9HvToYlq9rV47PWT7bncfV7dfL27mV831j8tv8_PrxgjEsTHUt4w0tP2SgeSOJFvIBQGyXgq94Ch1uzTWOM61cXYBzvSdtEDSMOik48fVp613neLjZPOoVj4bOww62Dhl1ZFoSVLfF_L0RbJ07ARIsQdIhK3Yw9i1rEwKe4K0af35RRDbDolzErKgH_9DH-KUQvlr1ZcBy8qcF4htIZNizsk6tU5-pdOzQlCbdKg_6VCbdKhdOkrRyc6ss9GDSzoYn_9W8q4c2RXuw5bz1tp_xFvLbyxtv44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884494833</pqid></control><display><type>article</type><title>An outdoor navigation system using GPS and inertial platform</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Panzieri, S. ; Pascucci, F. ; Ulivi, G.</creator><creatorcontrib>Panzieri, S. ; Pascucci, F. ; Ulivi, G.</creatorcontrib><description>The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2002.1011250</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Encoding ; Exact sciences and technology ; Filtering algorithms ; Fuses ; Geographic information systems ; Global Positioning System ; Image coding ; Information filtering ; Information filters ; Kalman filtering ; Kalman filters ; Localization ; Microsensors ; Mobile robots ; Navigation ; Navigation systems ; Position (location) ; Robot sensing systems ; Robotics ; Robots ; Satellite navigation systems ; Sensor data fusion ; Sensor fusion</subject><ispartof>IEEE/ASME transactions on mechatronics, 2002-06, Vol.7 (2), p.134-142</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</citedby><cites>FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1011250$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13737397$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Panzieri, S.</creatorcontrib><creatorcontrib>Pascucci, F.</creatorcontrib><creatorcontrib>Ulivi, G.</creatorcontrib><title>An outdoor navigation system using GPS and inertial platform</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Filtering algorithms</subject><subject>Fuses</subject><subject>Geographic information systems</subject><subject>Global Positioning System</subject><subject>Image coding</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Microsensors</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Position (location)</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Satellite navigation systems</subject><subject>Sensor data fusion</subject><subject>Sensor fusion</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNksFqGzEQhpfQQtK0L9BelkLSXtadkUa7K8glmDQppLTQBHITsiwFhbXkSLuBvH3l2tDSQzA6SIdvvpkRf1W9R5ghgvxy8_1ifjVjAGyGgMgEHFRHKAkbQLp7Vd7Q84aIi8PqTc4PAEAFPKrOzkMdp3EZY6qDfvL3evQx1Pk5j3ZVT9mH-_ry569ah2Xtg02j10O9HvToYlq9rV47PWT7bncfV7dfL27mV831j8tv8_PrxgjEsTHUt4w0tP2SgeSOJFvIBQGyXgq94Ch1uzTWOM61cXYBzvSdtEDSMOik48fVp613neLjZPOoVj4bOww62Dhl1ZFoSVLfF_L0RbJ07ARIsQdIhK3Yw9i1rEwKe4K0af35RRDbDolzErKgH_9DH-KUQvlr1ZcBy8qcF4htIZNizsk6tU5-pdOzQlCbdKg_6VCbdKhdOkrRyc6ss9GDSzoYn_9W8q4c2RXuw5bz1tp_xFvLbyxtv44</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Panzieri, S.</creator><creator>Pascucci, F.</creator><creator>Ulivi, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope><scope>KR7</scope><scope>7U5</scope><scope>7TC</scope></search><sort><creationdate>20020601</creationdate><title>An outdoor navigation system using GPS and inertial platform</title><author>Panzieri, S. ; Pascucci, F. ; Ulivi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Filtering algorithms</topic><topic>Fuses</topic><topic>Geographic information systems</topic><topic>Global Positioning System</topic><topic>Image coding</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Microsensors</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Position (location)</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Satellite navigation systems</topic><topic>Sensor data fusion</topic><topic>Sensor fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panzieri, S.</creatorcontrib><creatorcontrib>Pascucci, F.</creatorcontrib><creatorcontrib>Ulivi, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panzieri, S.</au><au>Pascucci, F.</au><au>Ulivi, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An outdoor navigation system using GPS and inertial platform</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>7</volume><issue>2</issue><spage>134</spage><epage>142</epage><pages>134-142</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The use of global positioning system (GPS) in outdoor localization is quite a common solution in large environments where no other reference is available and there are not so demanding positioning requirements. Of course, fine motion without the use of an expensive differential device is not an easy task, even now that available precision has been greatly improved as the military encoding has been removed. In this paper we present a localization algorithm based on Kalman filtering that tries to fuse information coming from an inexpensive single GPS with inertial data and map-based data. The algorithm is able to produce an estimated configuration for the robot that can be successfully fed back in a navigation system. Some experiments show difficulties and possible solutions of this sensor fusion problem.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMECH.2002.1011250</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2002-06, Vol.7 (2), p.134-142 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_miscellaneous_745649488 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Computer science control theory systems Control theory. Systems Encoding Exact sciences and technology Filtering algorithms Fuses Geographic information systems Global Positioning System Image coding Information filtering Information filters Kalman filtering Kalman filters Localization Microsensors Mobile robots Navigation Navigation systems Position (location) Robot sensing systems Robotics Robots Satellite navigation systems Sensor data fusion Sensor fusion |
title | An outdoor navigation system using GPS and inertial platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20outdoor%20navigation%20system%20using%20GPS%20and%20inertial%20platform&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Panzieri,%20S.&rft.date=2002-06-01&rft.volume=7&rft.issue=2&rft.spage=134&rft.epage=142&rft.pages=134-142&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2002.1011250&rft_dat=%3Cproquest_ieee_%3E745649488%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-c48624a068d2093f492b9b4012895ab319a6dcecf33acfeb0fc879e049c2079f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884494833&rft_id=info:pmid/&rft_ieee_id=1011250&rfr_iscdi=true |