Loading…

Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats

The biological fate of injected foreign particles is believed to be closely related to their interactions with blood plasma proteins and cells. In order to verify this correlation, we have quantitatively measured protein adsorption and blood retention profiles in rats by using model polystyrene late...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 1993-09, Vol.14 (11), p.823-833
Main Authors: Tan, J.S., Butterfield, D.E., Voycheck, C.L., Caldwell, K.D., Li, J.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The biological fate of injected foreign particles is believed to be closely related to their interactions with blood plasma proteins and cells. In order to verify this correlation, we have quantitatively measured protein adsorption and blood retention profiles in rats by using model polystyrene latex nanoparticles. The in vitro interactions of these non-biodegradable particles with plasma proteins and whole blood can be altered by modifying their surfaces with a family of amphiphilic polymeric surfactants, PEO/PPO Pluronic or Tetronic block copolymers. Protein adsorption was measured by several techniques, including photon correlation spectroscopy, centrifugation, high performance liquid chromatography and field-flow fractionation. Pluronic F108 and Tetronic 908 and 1508 copolymers (with PEO terminal block MW PEO > 5000, PPO middle block MW PPO > 3000, and HLB values > 24) were shown to be the most effective surface modifiers in reducing adsorption of plasma proteins on the particles. Minimum interaction of coated particles with whole blood was also observed by optical microscopy. The blood circulation half-life of the particles injected in rats was increased from 20 min to 13 h when the latex particles (75 nm) were precoated with these block copolymers. These results suggest that nanoparticles designed for use as injectable drugs or drug carriers should display similar surface characteristics provided by such amphiphilic surface modifiers.
ISSN:0142-9612
1878-5905
DOI:10.1016/0142-9612(93)90004-L