Loading…
Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques
An adaptive impulse correlated filter (AICF) for event-related signals that are time-locked to a stimulus is presented. This filter estimates the deterministic component of the signal and removes the noise uncorrelated with the stimulus, even if this noise is colored, as in the case of evoked potent...
Saved in:
Published in: | IEEE transactions on biomedical engineering 1992-10, Vol.39 (10), p.1032-1044 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An adaptive impulse correlated filter (AICF) for event-related signals that are time-locked to a stimulus is presented. This filter estimates the deterministic component of the signal and removes the noise uncorrelated with the stimulus, even if this noise is colored, as in the case of evoked potentials. The filter needs two inputs: the signal (primary input) and an impulse correlated with the deterministic component (reference input). The LMS algorithm is used to adjust the weights in the adaptive process. It is shown that the AICF is equivalent to exponentially weighted averaging (FWA) when using the LMS algorithm. A quantitative analysis of the signal-to-noise ratio improvement, convergence, and misadjustment error is presented. A comparison of the AICF with ensemble averaging (EA) and moving window averaging (MWA) techniques is also presented. The adaptive filter is applied to real high-resolution ECG signals and time-varying somatosensory evoked potentials.< > |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/10.161335 |