Loading…
Indirect host effect on ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks
Host trees can modify their soil abiotic conditions through their leaf fall quality which in turn may influence the ectomycorrhizal (ECM) fungal community composition. We investigated this indirect interaction using a causal modelling approach. We identified ECM fungi on the roots of two coexisting...
Saved in:
Published in: | Soil biology & biochemistry 2010-05, Vol.42 (5), p.788-796 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Host trees can modify their soil abiotic conditions through their leaf fall quality which in turn may influence the ectomycorrhizal (ECM) fungal community composition. We investigated this indirect interaction using a causal modelling approach. We identified ECM fungi on the roots of two coexisting oak species growing in two forests in southern Spain –
Quercus suber (evergreen) and
Quercus canariensis (winter deciduous)-using a PCR-based molecular method. We also analysed the leaf fall, litter and soil sampled beneath the tree canopies to determine the concentrations of key nutrients. The total mycorrhizal pool was comprised of 69 operational taxonomic units (OTUs).
Tomentella and
Russula were the most species-rich, frequent and abundant genera. ECM fungi with epigeous and resupinate fruiting bodies were found in 60% and 34% of the identified mycorrhizas, respectively. The calcium content of litter, which was significantly higher beneath the winter-deciduous oak species due to differences in leaf fall quality, was the most important variable for explaining ECM species distribution. The evaluation of alternative causal models by the d-sep method revealed that only those considering indirect leaf fall-mediated host effects statistically matched the observed covariation patterns between host, environment (litter, topsoil, subsoil) and fungal community variables. |
---|---|
ISSN: | 0038-0717 1879-3428 |
DOI: | 10.1016/j.soilbio.2010.01.014 |