Loading…
Active vibration control of a simply supported beam using a spatially distributed actuator
The application of a spatially shaped distributed actuator for the vibration control of a simply supported beam is studied both analytically and experimentally. The actuator consists of a layer of polyvinylidene fluoride (PVF 2 ) bonded to one face of the beam. A summary of the underlying theory is...
Saved in:
Published in: | IEEE Control Systems Magazine 1987-08, Vol.7 (4), p.25-30 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application of a spatially shaped distributed actuator for the vibration control of a simply supported beam is studied both analytically and experimentally. The actuator consists of a layer of polyvinylidene fluoride (PVF 2 ) bonded to one face of the beam. A summary of the underlying theory is presented, with emphasis on how controllability requirements affect the choice of the film's spatial distribution. The requisite film controller has a linearly varying spatial distribution that facilitates the control of both even- and odd-order vibrational modes. Experimental results are presented for the control of the beam's first three modes, using both the linearly varying as well as a uniform spatial distribution. The linearly varying distribution is shown to be effective in controlling both even- and odd-order modes, serving to increase the modal loss factors by up to a factor of 4.5. In addition, the experimental results are found to corroborate a simplified computer model of the controller. |
---|---|
ISSN: | 0272-1708 2374-9385 |
DOI: | 10.1109/MCS.1987.1105349 |