Loading…
ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD
Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert fr...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (7), p.3081-3086 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33 |
container_end_page | 3086 |
container_issue | 7 |
container_start_page | 3081 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Bryleva, Elena Y Rogers, Maximillian A Chang, Catherine C.Y Buen, Floyd Harris, Brent T Rousselet, Estelle Seidah, Nabil G Oddo, Salvatore LaFerla, Frank M Spencer, Thomas A Hickey, William F Chang, Ta-Yuan |
description | Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD. |
doi_str_mv | 10.1073/pnas.0913828107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_745930592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536820</jstor_id><sourcerecordid>40536820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</originalsourceid><addsrcrecordid>eNqFkstv1DAQxiMEokvhzAmwuACHtONHEvuCtFqeUiUObc-WYzu7XiXx1vYCOfC_42jLtnDhYPkxv-_zeDxF8RzDGYaGnu9GFc9AYMoJzwcPigXOu7JmAh4WCwDSlJwRdlI8iXELAKLi8Lg4IYApbepqUfxarpZXGK3taJFqe5WcH5EbdbAq2ogIe3v5rtxMJvifk9743sZkg--R9mOyY8ooShuL2qDySo0GqcH2zgeVsloNU--dQTuVstSvpxkfnLboh0sbtPzwtHjUqT7aZ7fzaXH96ePV6kt58e3z19XyotQVgVQyobEFbQgTBqignW1Nha2tNVbMGGo7Q3FrNAdGdKsYB-igrW2n86g6Sk-L9wff3b4drNE586B6uQtuUGGSXjn5d2R0G7n23yXhDAivs8GbW4Pgb_a5CHJwUdu-V6P1-ygbVgkKlSD_J3PhBQjGMvn6H3Lr92HMdZD5fxglNcMZOj9AOvgYg-2OSWOQcwvIuQXkXQtkxcv7bz3yf_78HjAr7-wa2UgKfL7zxQHYxuTDkWBQ0ZoTyPFXh3invFTr4KK8vpztAXOoahD0NwS6y6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201432641</pqid></control><display><type>article</type><title>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Bryleva, Elena Y ; Rogers, Maximillian A ; Chang, Catherine C.Y ; Buen, Floyd ; Harris, Brent T ; Rousselet, Estelle ; Seidah, Nabil G ; Oddo, Salvatore ; LaFerla, Frank M ; Spencer, Thomas A ; Hickey, William F ; Chang, Ta-Yuan</creator><creatorcontrib>Bryleva, Elena Y ; Rogers, Maximillian A ; Chang, Catherine C.Y ; Buen, Floyd ; Harris, Brent T ; Rousselet, Estelle ; Seidah, Nabil G ; Oddo, Salvatore ; LaFerla, Frank M ; Spencer, Thomas A ; Hickey, William F ; Chang, Ta-Yuan</creatorcontrib><description>Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0913828107</identifier><identifier>PMID: 20133765</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetyl-CoA C-Acetyltransferase - deficiency ; Acetyl-CoA C-Acetyltransferase - genetics ; Acyl Coenzyme A - metabolism ; Alzheimer Disease - enzymology ; Alzheimer Disease - genetics ; Alzheimer Disease - pathology ; Alzheimer's disease ; Alzheimers disease ; Amyloid - metabolism ; Amyloids ; Animals ; Biological Sciences ; Biosynthesis ; Brain ; Brain - metabolism ; Cells ; Cholesterol ; Cholesterol - metabolism ; Cholesterols ; Enzymes ; Gene Silencing ; Humans ; Hydroxycholesterols - metabolism ; Messenger RNA ; Metabolism ; Mice ; Mice, Transgenic ; Models, Biological ; Neurons ; Pathology ; Proteins ; Rodents ; Sterols</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (7), p.3081-3086</ispartof><rights>Copyright National Academy of Sciences Feb 16, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</citedby><cites>FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536820$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536820$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryleva, Elena Y</creatorcontrib><creatorcontrib>Rogers, Maximillian A</creatorcontrib><creatorcontrib>Chang, Catherine C.Y</creatorcontrib><creatorcontrib>Buen, Floyd</creatorcontrib><creatorcontrib>Harris, Brent T</creatorcontrib><creatorcontrib>Rousselet, Estelle</creatorcontrib><creatorcontrib>Seidah, Nabil G</creatorcontrib><creatorcontrib>Oddo, Salvatore</creatorcontrib><creatorcontrib>LaFerla, Frank M</creatorcontrib><creatorcontrib>Spencer, Thomas A</creatorcontrib><creatorcontrib>Hickey, William F</creatorcontrib><creatorcontrib>Chang, Ta-Yuan</creatorcontrib><title>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.</description><subject>Acetyl-CoA C-Acetyltransferase - deficiency</subject><subject>Acetyl-CoA C-Acetyltransferase - genetics</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Alzheimer Disease - enzymology</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amyloid - metabolism</subject><subject>Amyloids</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cells</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterols</subject><subject>Enzymes</subject><subject>Gene Silencing</subject><subject>Humans</subject><subject>Hydroxycholesterols - metabolism</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Models, Biological</subject><subject>Neurons</subject><subject>Pathology</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Sterols</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkstv1DAQxiMEokvhzAmwuACHtONHEvuCtFqeUiUObc-WYzu7XiXx1vYCOfC_42jLtnDhYPkxv-_zeDxF8RzDGYaGnu9GFc9AYMoJzwcPigXOu7JmAh4WCwDSlJwRdlI8iXELAKLi8Lg4IYApbepqUfxarpZXGK3taJFqe5WcH5EbdbAq2ogIe3v5rtxMJvifk9743sZkg--R9mOyY8ooShuL2qDySo0GqcH2zgeVsloNU--dQTuVstSvpxkfnLboh0sbtPzwtHjUqT7aZ7fzaXH96ePV6kt58e3z19XyotQVgVQyobEFbQgTBqignW1Nha2tNVbMGGo7Q3FrNAdGdKsYB-igrW2n86g6Sk-L9wff3b4drNE586B6uQtuUGGSXjn5d2R0G7n23yXhDAivs8GbW4Pgb_a5CHJwUdu-V6P1-ygbVgkKlSD_J3PhBQjGMvn6H3Lr92HMdZD5fxglNcMZOj9AOvgYg-2OSWOQcwvIuQXkXQtkxcv7bz3yf_78HjAr7-wa2UgKfL7zxQHYxuTDkWBQ0ZoTyPFXh3invFTr4KK8vpztAXOoahD0NwS6y6c</recordid><startdate>20100216</startdate><enddate>20100216</enddate><creator>Bryleva, Elena Y</creator><creator>Rogers, Maximillian A</creator><creator>Chang, Catherine C.Y</creator><creator>Buen, Floyd</creator><creator>Harris, Brent T</creator><creator>Rousselet, Estelle</creator><creator>Seidah, Nabil G</creator><creator>Oddo, Salvatore</creator><creator>LaFerla, Frank M</creator><creator>Spencer, Thomas A</creator><creator>Hickey, William F</creator><creator>Chang, Ta-Yuan</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100216</creationdate><title>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</title><author>Bryleva, Elena Y ; Rogers, Maximillian A ; Chang, Catherine C.Y ; Buen, Floyd ; Harris, Brent T ; Rousselet, Estelle ; Seidah, Nabil G ; Oddo, Salvatore ; LaFerla, Frank M ; Spencer, Thomas A ; Hickey, William F ; Chang, Ta-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetyl-CoA C-Acetyltransferase - deficiency</topic><topic>Acetyl-CoA C-Acetyltransferase - genetics</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Alzheimer Disease - enzymology</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amyloid - metabolism</topic><topic>Amyloids</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cells</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterols</topic><topic>Enzymes</topic><topic>Gene Silencing</topic><topic>Humans</topic><topic>Hydroxycholesterols - metabolism</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Models, Biological</topic><topic>Neurons</topic><topic>Pathology</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Sterols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryleva, Elena Y</creatorcontrib><creatorcontrib>Rogers, Maximillian A</creatorcontrib><creatorcontrib>Chang, Catherine C.Y</creatorcontrib><creatorcontrib>Buen, Floyd</creatorcontrib><creatorcontrib>Harris, Brent T</creatorcontrib><creatorcontrib>Rousselet, Estelle</creatorcontrib><creatorcontrib>Seidah, Nabil G</creatorcontrib><creatorcontrib>Oddo, Salvatore</creatorcontrib><creatorcontrib>LaFerla, Frank M</creatorcontrib><creatorcontrib>Spencer, Thomas A</creatorcontrib><creatorcontrib>Hickey, William F</creatorcontrib><creatorcontrib>Chang, Ta-Yuan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryleva, Elena Y</au><au>Rogers, Maximillian A</au><au>Chang, Catherine C.Y</au><au>Buen, Floyd</au><au>Harris, Brent T</au><au>Rousselet, Estelle</au><au>Seidah, Nabil G</au><au>Oddo, Salvatore</au><au>LaFerla, Frank M</au><au>Spencer, Thomas A</au><au>Hickey, William F</au><au>Chang, Ta-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-16</date><risdate>2010</risdate><volume>107</volume><issue>7</issue><spage>3081</spage><epage>3086</epage><pages>3081-3086</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133765</pmid><doi>10.1073/pnas.0913828107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (7), p.3081-3086 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_745930592 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Acetyl-CoA C-Acetyltransferase - deficiency Acetyl-CoA C-Acetyltransferase - genetics Acyl Coenzyme A - metabolism Alzheimer Disease - enzymology Alzheimer Disease - genetics Alzheimer Disease - pathology Alzheimer's disease Alzheimers disease Amyloid - metabolism Amyloids Animals Biological Sciences Biosynthesis Brain Brain - metabolism Cells Cholesterol Cholesterol - metabolism Cholesterols Enzymes Gene Silencing Humans Hydroxycholesterols - metabolism Messenger RNA Metabolism Mice Mice, Transgenic Models, Biological Neurons Pathology Proteins Rodents Sterols |
title | ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACAT1%20gene%20ablation%20increases%2024(S)-hydroxycholesterol%20content%20in%20the%20brain%20and%20ameliorates%20amyloid%20pathology%20in%20mice%20with%20AD&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bryleva,%20Elena%20Y&rft.date=2010-02-16&rft.volume=107&rft.issue=7&rft.spage=3081&rft.epage=3086&rft.pages=3081-3086&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0913828107&rft_dat=%3Cjstor_proqu%3E40536820%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201432641&rft_id=info:pmid/20133765&rft_jstor_id=40536820&rfr_iscdi=true |