Loading…

ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD

Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert fr...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (7), p.3081-3086
Main Authors: Bryleva, Elena Y, Rogers, Maximillian A, Chang, Catherine C.Y, Buen, Floyd, Harris, Brent T, Rousselet, Estelle, Seidah, Nabil G, Oddo, Salvatore, LaFerla, Frank M, Spencer, Thomas A, Hickey, William F, Chang, Ta-Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33
cites cdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33
container_end_page 3086
container_issue 7
container_start_page 3081
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Bryleva, Elena Y
Rogers, Maximillian A
Chang, Catherine C.Y
Buen, Floyd
Harris, Brent T
Rousselet, Estelle
Seidah, Nabil G
Oddo, Salvatore
LaFerla, Frank M
Spencer, Thomas A
Hickey, William F
Chang, Ta-Yuan
description Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.
doi_str_mv 10.1073/pnas.0913828107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_745930592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536820</jstor_id><sourcerecordid>40536820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</originalsourceid><addsrcrecordid>eNqFkstv1DAQxiMEokvhzAmwuACHtONHEvuCtFqeUiUObc-WYzu7XiXx1vYCOfC_42jLtnDhYPkxv-_zeDxF8RzDGYaGnu9GFc9AYMoJzwcPigXOu7JmAh4WCwDSlJwRdlI8iXELAKLi8Lg4IYApbepqUfxarpZXGK3taJFqe5WcH5EbdbAq2ogIe3v5rtxMJvifk9743sZkg--R9mOyY8ooShuL2qDySo0GqcH2zgeVsloNU--dQTuVstSvpxkfnLboh0sbtPzwtHjUqT7aZ7fzaXH96ePV6kt58e3z19XyotQVgVQyobEFbQgTBqignW1Nha2tNVbMGGo7Q3FrNAdGdKsYB-igrW2n86g6Sk-L9wff3b4drNE586B6uQtuUGGSXjn5d2R0G7n23yXhDAivs8GbW4Pgb_a5CHJwUdu-V6P1-ygbVgkKlSD_J3PhBQjGMvn6H3Lr92HMdZD5fxglNcMZOj9AOvgYg-2OSWOQcwvIuQXkXQtkxcv7bz3yf_78HjAr7-wa2UgKfL7zxQHYxuTDkWBQ0ZoTyPFXh3invFTr4KK8vpztAXOoahD0NwS6y6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201432641</pqid></control><display><type>article</type><title>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Bryleva, Elena Y ; Rogers, Maximillian A ; Chang, Catherine C.Y ; Buen, Floyd ; Harris, Brent T ; Rousselet, Estelle ; Seidah, Nabil G ; Oddo, Salvatore ; LaFerla, Frank M ; Spencer, Thomas A ; Hickey, William F ; Chang, Ta-Yuan</creator><creatorcontrib>Bryleva, Elena Y ; Rogers, Maximillian A ; Chang, Catherine C.Y ; Buen, Floyd ; Harris, Brent T ; Rousselet, Estelle ; Seidah, Nabil G ; Oddo, Salvatore ; LaFerla, Frank M ; Spencer, Thomas A ; Hickey, William F ; Chang, Ta-Yuan</creatorcontrib><description>Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0913828107</identifier><identifier>PMID: 20133765</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetyl-CoA C-Acetyltransferase - deficiency ; Acetyl-CoA C-Acetyltransferase - genetics ; Acyl Coenzyme A - metabolism ; Alzheimer Disease - enzymology ; Alzheimer Disease - genetics ; Alzheimer Disease - pathology ; Alzheimer's disease ; Alzheimers disease ; Amyloid - metabolism ; Amyloids ; Animals ; Biological Sciences ; Biosynthesis ; Brain ; Brain - metabolism ; Cells ; Cholesterol ; Cholesterol - metabolism ; Cholesterols ; Enzymes ; Gene Silencing ; Humans ; Hydroxycholesterols - metabolism ; Messenger RNA ; Metabolism ; Mice ; Mice, Transgenic ; Models, Biological ; Neurons ; Pathology ; Proteins ; Rodents ; Sterols</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (7), p.3081-3086</ispartof><rights>Copyright National Academy of Sciences Feb 16, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</citedby><cites>FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536820$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536820$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryleva, Elena Y</creatorcontrib><creatorcontrib>Rogers, Maximillian A</creatorcontrib><creatorcontrib>Chang, Catherine C.Y</creatorcontrib><creatorcontrib>Buen, Floyd</creatorcontrib><creatorcontrib>Harris, Brent T</creatorcontrib><creatorcontrib>Rousselet, Estelle</creatorcontrib><creatorcontrib>Seidah, Nabil G</creatorcontrib><creatorcontrib>Oddo, Salvatore</creatorcontrib><creatorcontrib>LaFerla, Frank M</creatorcontrib><creatorcontrib>Spencer, Thomas A</creatorcontrib><creatorcontrib>Hickey, William F</creatorcontrib><creatorcontrib>Chang, Ta-Yuan</creatorcontrib><title>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.</description><subject>Acetyl-CoA C-Acetyltransferase - deficiency</subject><subject>Acetyl-CoA C-Acetyltransferase - genetics</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Alzheimer Disease - enzymology</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amyloid - metabolism</subject><subject>Amyloids</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cells</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterols</subject><subject>Enzymes</subject><subject>Gene Silencing</subject><subject>Humans</subject><subject>Hydroxycholesterols - metabolism</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Models, Biological</subject><subject>Neurons</subject><subject>Pathology</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Sterols</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkstv1DAQxiMEokvhzAmwuACHtONHEvuCtFqeUiUObc-WYzu7XiXx1vYCOfC_42jLtnDhYPkxv-_zeDxF8RzDGYaGnu9GFc9AYMoJzwcPigXOu7JmAh4WCwDSlJwRdlI8iXELAKLi8Lg4IYApbepqUfxarpZXGK3taJFqe5WcH5EbdbAq2ogIe3v5rtxMJvifk9743sZkg--R9mOyY8ooShuL2qDySo0GqcH2zgeVsloNU--dQTuVstSvpxkfnLboh0sbtPzwtHjUqT7aZ7fzaXH96ePV6kt58e3z19XyotQVgVQyobEFbQgTBqignW1Nha2tNVbMGGo7Q3FrNAdGdKsYB-igrW2n86g6Sk-L9wff3b4drNE586B6uQtuUGGSXjn5d2R0G7n23yXhDAivs8GbW4Pgb_a5CHJwUdu-V6P1-ygbVgkKlSD_J3PhBQjGMvn6H3Lr92HMdZD5fxglNcMZOj9AOvgYg-2OSWOQcwvIuQXkXQtkxcv7bz3yf_78HjAr7-wa2UgKfL7zxQHYxuTDkWBQ0ZoTyPFXh3invFTr4KK8vpztAXOoahD0NwS6y6c</recordid><startdate>20100216</startdate><enddate>20100216</enddate><creator>Bryleva, Elena Y</creator><creator>Rogers, Maximillian A</creator><creator>Chang, Catherine C.Y</creator><creator>Buen, Floyd</creator><creator>Harris, Brent T</creator><creator>Rousselet, Estelle</creator><creator>Seidah, Nabil G</creator><creator>Oddo, Salvatore</creator><creator>LaFerla, Frank M</creator><creator>Spencer, Thomas A</creator><creator>Hickey, William F</creator><creator>Chang, Ta-Yuan</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100216</creationdate><title>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</title><author>Bryleva, Elena Y ; Rogers, Maximillian A ; Chang, Catherine C.Y ; Buen, Floyd ; Harris, Brent T ; Rousselet, Estelle ; Seidah, Nabil G ; Oddo, Salvatore ; LaFerla, Frank M ; Spencer, Thomas A ; Hickey, William F ; Chang, Ta-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetyl-CoA C-Acetyltransferase - deficiency</topic><topic>Acetyl-CoA C-Acetyltransferase - genetics</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Alzheimer Disease - enzymology</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amyloid - metabolism</topic><topic>Amyloids</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cells</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterols</topic><topic>Enzymes</topic><topic>Gene Silencing</topic><topic>Humans</topic><topic>Hydroxycholesterols - metabolism</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Models, Biological</topic><topic>Neurons</topic><topic>Pathology</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Sterols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryleva, Elena Y</creatorcontrib><creatorcontrib>Rogers, Maximillian A</creatorcontrib><creatorcontrib>Chang, Catherine C.Y</creatorcontrib><creatorcontrib>Buen, Floyd</creatorcontrib><creatorcontrib>Harris, Brent T</creatorcontrib><creatorcontrib>Rousselet, Estelle</creatorcontrib><creatorcontrib>Seidah, Nabil G</creatorcontrib><creatorcontrib>Oddo, Salvatore</creatorcontrib><creatorcontrib>LaFerla, Frank M</creatorcontrib><creatorcontrib>Spencer, Thomas A</creatorcontrib><creatorcontrib>Hickey, William F</creatorcontrib><creatorcontrib>Chang, Ta-Yuan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryleva, Elena Y</au><au>Rogers, Maximillian A</au><au>Chang, Catherine C.Y</au><au>Buen, Floyd</au><au>Harris, Brent T</au><au>Rousselet, Estelle</au><au>Seidah, Nabil G</au><au>Oddo, Salvatore</au><au>LaFerla, Frank M</au><au>Spencer, Thomas A</au><au>Hickey, William F</au><au>Chang, Ta-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-16</date><risdate>2010</risdate><volume>107</volume><issue>7</issue><spage>3081</spage><epage>3086</epage><pages>3081-3086</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133765</pmid><doi>10.1073/pnas.0913828107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (7), p.3081-3086
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_745930592
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Acetyl-CoA C-Acetyltransferase - deficiency
Acetyl-CoA C-Acetyltransferase - genetics
Acyl Coenzyme A - metabolism
Alzheimer Disease - enzymology
Alzheimer Disease - genetics
Alzheimer Disease - pathology
Alzheimer's disease
Alzheimers disease
Amyloid - metabolism
Amyloids
Animals
Biological Sciences
Biosynthesis
Brain
Brain - metabolism
Cells
Cholesterol
Cholesterol - metabolism
Cholesterols
Enzymes
Gene Silencing
Humans
Hydroxycholesterols - metabolism
Messenger RNA
Metabolism
Mice
Mice, Transgenic
Models, Biological
Neurons
Pathology
Proteins
Rodents
Sterols
title ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACAT1%20gene%20ablation%20increases%2024(S)-hydroxycholesterol%20content%20in%20the%20brain%20and%20ameliorates%20amyloid%20pathology%20in%20mice%20with%20AD&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bryleva,%20Elena%20Y&rft.date=2010-02-16&rft.volume=107&rft.issue=7&rft.spage=3081&rft.epage=3086&rft.pages=3081-3086&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0913828107&rft_dat=%3Cjstor_proqu%3E40536820%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-49c1e0cd249d0393febd51ee6c1a4dd3efd31bdc8042cba4800f0b6efc6ef5f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201432641&rft_id=info:pmid/20133765&rft_jstor_id=40536820&rfr_iscdi=true