Loading…

Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts

The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main pr...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis 2010-04, Vol.14 (2), p.172-184
Main Authors: Bauer, Christian, Pock, Thomas, Sorantin, Erich, Bischof, Horst, Beichel, Reinhard
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03
cites
container_end_page 184
container_issue 2
container_start_page 172
container_title Medical image analysis
container_volume 14
creator Bauer, Christian
Pock, Thomas
Sorantin, Erich
Bischof, Horst
Beichel, Reinhard
description The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.
doi_str_mv 10.1016/j.media.2009.11.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745930830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841509001406</els_id><sourcerecordid>733529028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03</originalsourceid><addsrcrecordid>eNqFkD1PHDEQhq0IFAjJL4gUuaO6zcx6v1ykQIiESEgUQEVheb3jw6e93Ys_Lgq_Hh9HKKHySH7edzQPY18RCgRsvq-KNQ1OFyWALBALAPGBHaNocNFVpTh4nbE-Yp9CWAFAW1XwkR3lSANtI4_Z_Q0t1zRFHd088dlyN0Xyf-ctTVwMPKY-jdrz6Il4iD6ZmDwFnqIb3aObljw86A3xjXezD1xPA196vXngJsXwmR1aPQb68vKesLufF7fnl4ur61-_z8-uFqaqm7iwtUYjekkEojHWNv3QUdmathMWqtJaxNpAJ8Cg7CpZCzv0FaKRJZGVOXTCTve9Gz__SRSiWrtgaBz1RHMKqq1qKXYF75NC1KWEssuk2JPGzyF4siqfuNb-n0JQO_1qpZ71q51-haiy_pz69tKf-vz7mvnvOwM_9gBlH1tHXgXjaDK5yZOJapjdmwueAATxmDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733529028</pqid></control><display><type>article</type><title>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</title><source>ScienceDirect Freedom Collection</source><creator>Bauer, Christian ; Pock, Thomas ; Sorantin, Erich ; Bischof, Horst ; Beichel, Reinhard</creator><creatorcontrib>Bauer, Christian ; Pock, Thomas ; Sorantin, Erich ; Bischof, Horst ; Beichel, Reinhard</creatorcontrib><description>The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2009.11.003</identifier><identifier>PMID: 20060769</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Angiography - methods ; Artificial Intelligence ; Humans ; Imaging, Three-Dimensional - methods ; Liver vessel segmentation ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique ; Tomography, X-Ray Computed - methods ; Tubular structure segmentation ; Vessel tree separation</subject><ispartof>Medical image analysis, 2010-04, Vol.14 (2), p.172-184</ispartof><rights>2009 Elsevier B.V.</rights><rights>Copyright 2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20060769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Christian</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><creatorcontrib>Beichel, Reinhard</creatorcontrib><title>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.</description><subject>Algorithms</subject><subject>Angiography - methods</subject><subject>Artificial Intelligence</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Liver vessel segmentation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tubular structure segmentation</subject><subject>Vessel tree separation</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PHDEQhq0IFAjJL4gUuaO6zcx6v1ykQIiESEgUQEVheb3jw6e93Ys_Lgq_Hh9HKKHySH7edzQPY18RCgRsvq-KNQ1OFyWALBALAPGBHaNocNFVpTh4nbE-Yp9CWAFAW1XwkR3lSANtI4_Z_Q0t1zRFHd088dlyN0Xyf-ctTVwMPKY-jdrz6Il4iD6ZmDwFnqIb3aObljw86A3xjXezD1xPA196vXngJsXwmR1aPQb68vKesLufF7fnl4ur61-_z8-uFqaqm7iwtUYjekkEojHWNv3QUdmathMWqtJaxNpAJ8Cg7CpZCzv0FaKRJZGVOXTCTve9Gz__SRSiWrtgaBz1RHMKqq1qKXYF75NC1KWEssuk2JPGzyF4siqfuNb-n0JQO_1qpZ71q51-haiy_pz69tKf-vz7mvnvOwM_9gBlH1tHXgXjaDK5yZOJapjdmwueAATxmDY</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Bauer, Christian</creator><creator>Pock, Thomas</creator><creator>Sorantin, Erich</creator><creator>Bischof, Horst</creator><creator>Beichel, Reinhard</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100401</creationdate><title>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</title><author>Bauer, Christian ; Pock, Thomas ; Sorantin, Erich ; Bischof, Horst ; Beichel, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Angiography - methods</topic><topic>Artificial Intelligence</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Liver vessel segmentation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tubular structure segmentation</topic><topic>Vessel tree separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Christian</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><creatorcontrib>Beichel, Reinhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Christian</au><au>Pock, Thomas</au><au>Sorantin, Erich</au><au>Bischof, Horst</au><au>Beichel, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>14</volume><issue>2</issue><spage>172</spage><epage>184</epage><pages>172-184</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20060769</pmid><doi>10.1016/j.media.2009.11.003</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2010-04, Vol.14 (2), p.172-184
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_745930830
source ScienceDirect Freedom Collection
subjects Algorithms
Angiography - methods
Artificial Intelligence
Humans
Imaging, Three-Dimensional - methods
Liver vessel segmentation
Pattern Recognition, Automated - methods
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique
Tomography, X-Ray Computed - methods
Tubular structure segmentation
Vessel tree separation
title Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20interwoven%203d%20tubular%20tree%20structures%20utilizing%20shape%20priors%20and%20graph%20cuts&rft.jtitle=Medical%20image%20analysis&rft.au=Bauer,%20Christian&rft.date=2010-04-01&rft.volume=14&rft.issue=2&rft.spage=172&rft.epage=184&rft.pages=172-184&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2009.11.003&rft_dat=%3Cproquest_cross%3E733529028%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733529028&rft_id=info:pmid/20060769&rfr_iscdi=true