Loading…
Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts
The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main pr...
Saved in:
Published in: | Medical image analysis 2010-04, Vol.14 (2), p.172-184 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03 |
---|---|
cites | |
container_end_page | 184 |
container_issue | 2 |
container_start_page | 172 |
container_title | Medical image analysis |
container_volume | 14 |
creator | Bauer, Christian Pock, Thomas Sorantin, Erich Bischof, Horst Beichel, Reinhard |
description | The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms. |
doi_str_mv | 10.1016/j.media.2009.11.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745930830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841509001406</els_id><sourcerecordid>733529028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03</originalsourceid><addsrcrecordid>eNqFkD1PHDEQhq0IFAjJL4gUuaO6zcx6v1ykQIiESEgUQEVheb3jw6e93Ys_Lgq_Hh9HKKHySH7edzQPY18RCgRsvq-KNQ1OFyWALBALAPGBHaNocNFVpTh4nbE-Yp9CWAFAW1XwkR3lSANtI4_Z_Q0t1zRFHd088dlyN0Xyf-ctTVwMPKY-jdrz6Il4iD6ZmDwFnqIb3aObljw86A3xjXezD1xPA196vXngJsXwmR1aPQb68vKesLufF7fnl4ur61-_z8-uFqaqm7iwtUYjekkEojHWNv3QUdmathMWqtJaxNpAJ8Cg7CpZCzv0FaKRJZGVOXTCTve9Gz__SRSiWrtgaBz1RHMKqq1qKXYF75NC1KWEssuk2JPGzyF4siqfuNb-n0JQO_1qpZ71q51-haiy_pz69tKf-vz7mvnvOwM_9gBlH1tHXgXjaDK5yZOJapjdmwueAATxmDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733529028</pqid></control><display><type>article</type><title>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</title><source>ScienceDirect Freedom Collection</source><creator>Bauer, Christian ; Pock, Thomas ; Sorantin, Erich ; Bischof, Horst ; Beichel, Reinhard</creator><creatorcontrib>Bauer, Christian ; Pock, Thomas ; Sorantin, Erich ; Bischof, Horst ; Beichel, Reinhard</creatorcontrib><description>The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2009.11.003</identifier><identifier>PMID: 20060769</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Angiography - methods ; Artificial Intelligence ; Humans ; Imaging, Three-Dimensional - methods ; Liver vessel segmentation ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique ; Tomography, X-Ray Computed - methods ; Tubular structure segmentation ; Vessel tree separation</subject><ispartof>Medical image analysis, 2010-04, Vol.14 (2), p.172-184</ispartof><rights>2009 Elsevier B.V.</rights><rights>Copyright 2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20060769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Christian</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><creatorcontrib>Beichel, Reinhard</creatorcontrib><title>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.</description><subject>Algorithms</subject><subject>Angiography - methods</subject><subject>Artificial Intelligence</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Liver vessel segmentation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tubular structure segmentation</subject><subject>Vessel tree separation</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PHDEQhq0IFAjJL4gUuaO6zcx6v1ykQIiESEgUQEVheb3jw6e93Ys_Lgq_Hh9HKKHySH7edzQPY18RCgRsvq-KNQ1OFyWALBALAPGBHaNocNFVpTh4nbE-Yp9CWAFAW1XwkR3lSANtI4_Z_Q0t1zRFHd088dlyN0Xyf-ctTVwMPKY-jdrz6Il4iD6ZmDwFnqIb3aObljw86A3xjXezD1xPA196vXngJsXwmR1aPQb68vKesLufF7fnl4ur61-_z8-uFqaqm7iwtUYjekkEojHWNv3QUdmathMWqtJaxNpAJ8Cg7CpZCzv0FaKRJZGVOXTCTve9Gz__SRSiWrtgaBz1RHMKqq1qKXYF75NC1KWEssuk2JPGzyF4siqfuNb-n0JQO_1qpZ71q51-haiy_pz69tKf-vz7mvnvOwM_9gBlH1tHXgXjaDK5yZOJapjdmwueAATxmDY</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Bauer, Christian</creator><creator>Pock, Thomas</creator><creator>Sorantin, Erich</creator><creator>Bischof, Horst</creator><creator>Beichel, Reinhard</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100401</creationdate><title>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</title><author>Bauer, Christian ; Pock, Thomas ; Sorantin, Erich ; Bischof, Horst ; Beichel, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Angiography - methods</topic><topic>Artificial Intelligence</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Liver vessel segmentation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tubular structure segmentation</topic><topic>Vessel tree separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Christian</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><creatorcontrib>Beichel, Reinhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Christian</au><au>Pock, Thomas</au><au>Sorantin, Erich</au><au>Bischof, Horst</au><au>Beichel, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>14</volume><issue>2</issue><spage>172</spage><epage>184</epage><pages>172-184</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom–up identification of tubular objects combined with a top–down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20060769</pmid><doi>10.1016/j.media.2009.11.003</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2010-04, Vol.14 (2), p.172-184 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_745930830 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Angiography - methods Artificial Intelligence Humans Imaging, Three-Dimensional - methods Liver vessel segmentation Pattern Recognition, Automated - methods Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results Sensitivity and Specificity Subtraction Technique Tomography, X-Ray Computed - methods Tubular structure segmentation Vessel tree separation |
title | Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20interwoven%203d%20tubular%20tree%20structures%20utilizing%20shape%20priors%20and%20graph%20cuts&rft.jtitle=Medical%20image%20analysis&rft.au=Bauer,%20Christian&rft.date=2010-04-01&rft.volume=14&rft.issue=2&rft.spage=172&rft.epage=184&rft.pages=172-184&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2009.11.003&rft_dat=%3Cproquest_cross%3E733529028%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-f5a1c3b9ee036cff6bd8e27c783f042ff115c0830c1984953fdb411c92eef9e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733529028&rft_id=info:pmid/20060769&rfr_iscdi=true |