Loading…
Statistically optimal perception and learning: from behavior to neural representations
Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal...
Saved in:
Published in: | Trends in cognitive sciences 2010-03, Vol.14 (3), p.119-130 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3 |
container_end_page | 130 |
container_issue | 3 |
container_start_page | 119 |
container_title | Trends in cognitive sciences |
container_volume | 14 |
creator | Fiser, József Berkes, Pietro Orbán, Gergő Lengyel, Máté |
description | Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. |
doi_str_mv | 10.1016/j.tics.2010.01.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745931729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1364661310000045</els_id><sourcerecordid>733659496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMo7rr6BzxIX8RTj5XPTosIsvgFCx5WxVvIpCuasSfpTboX5t-bZkYFD5pLivC8RXiqCHlMYUOBque7zRxc2TCoD0A3APwOOae661sO3de7teZKtEpRfkYelLIDoLLr1H1yViOSK83PyZfr2c6h1EZ2HA9Nmuawt2MzYXZY6xQbG4dmRJtjiN9eND6nfbPF7_Y2pNzMqYm45BrIOGUsGNduKZaH5J63Y8FHp_uCfH775tPl-_bq47sPl6-vWic1m1sKToMYOmZ7r0B6JfngBzsgcEcZBSZQaSlR9FtNndeWd06h74Vygm7R8gvy7Nh3yulmwTKbfSgOx9FGTEsxnZA9px3r_09yrmQvelVJdiRdTqVk9GbKVUo-GApmFW92ZhVvVvEGqKnia-jJqf2y3ePwO_LLdAWengBbqmufbXSh_OGYBkm1rNzLI4dV223AbIoLGB0OIaObzZDCv__x6q-4G0Ncp_sDD1h2acmxDsRQU5gBc72uyLohFNYjJP8JvFS3Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733659496</pqid></control><display><type>article</type><title>Statistically optimal perception and learning: from behavior to neural representations</title><source>ScienceDirect Freedom Collection</source><creator>Fiser, József ; Berkes, Pietro ; Orbán, Gergő ; Lengyel, Máté</creator><creatorcontrib>Fiser, József ; Berkes, Pietro ; Orbán, Gergő ; Lengyel, Máté</creatorcontrib><description>Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty.</description><identifier>ISSN: 1364-6613</identifier><identifier>EISSN: 1879-307X</identifier><identifier>DOI: 10.1016/j.tics.2010.01.003</identifier><identifier>PMID: 20153683</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cerebral Cortex ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Learning ; Learning. Memory ; Models, Neurological ; Models, Statistical ; Neurology ; Perception ; Psychiatry ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Vision</subject><ispartof>Trends in cognitive sciences, 2010-03, Vol.14 (3), p.119-130</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</citedby><cites>FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22805185$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20153683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiser, József</creatorcontrib><creatorcontrib>Berkes, Pietro</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><creatorcontrib>Lengyel, Máté</creatorcontrib><title>Statistically optimal perception and learning: from behavior to neural representations</title><title>Trends in cognitive sciences</title><addtitle>Trends Cogn Sci</addtitle><description>Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cerebral Cortex</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning. Memory</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Neurology</subject><subject>Perception</subject><subject>Psychiatry</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Vision</subject><issn>1364-6613</issn><issn>1879-307X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkk2LFDEQhoMo7rr6BzxIX8RTj5XPTosIsvgFCx5WxVvIpCuasSfpTboX5t-bZkYFD5pLivC8RXiqCHlMYUOBque7zRxc2TCoD0A3APwOOae661sO3de7teZKtEpRfkYelLIDoLLr1H1yViOSK83PyZfr2c6h1EZ2HA9Nmuawt2MzYXZY6xQbG4dmRJtjiN9eND6nfbPF7_Y2pNzMqYm45BrIOGUsGNduKZaH5J63Y8FHp_uCfH775tPl-_bq47sPl6-vWic1m1sKToMYOmZ7r0B6JfngBzsgcEcZBSZQaSlR9FtNndeWd06h74Vygm7R8gvy7Nh3yulmwTKbfSgOx9FGTEsxnZA9px3r_09yrmQvelVJdiRdTqVk9GbKVUo-GApmFW92ZhVvVvEGqKnia-jJqf2y3ePwO_LLdAWengBbqmufbXSh_OGYBkm1rNzLI4dV223AbIoLGB0OIaObzZDCv__x6q-4G0Ncp_sDD1h2acmxDsRQU5gBc72uyLohFNYjJP8JvFS3Bw</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Fiser, József</creator><creator>Berkes, Pietro</creator><creator>Orbán, Gergő</creator><creator>Lengyel, Máté</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20100301</creationdate><title>Statistically optimal perception and learning: from behavior to neural representations</title><author>Fiser, József ; Berkes, Pietro ; Orbán, Gergő ; Lengyel, Máté</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cerebral Cortex</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning. Memory</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Neurology</topic><topic>Perception</topic><topic>Psychiatry</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiser, József</creatorcontrib><creatorcontrib>Berkes, Pietro</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><creatorcontrib>Lengyel, Máté</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Trends in cognitive sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiser, József</au><au>Berkes, Pietro</au><au>Orbán, Gergő</au><au>Lengyel, Máté</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistically optimal perception and learning: from behavior to neural representations</atitle><jtitle>Trends in cognitive sciences</jtitle><addtitle>Trends Cogn Sci</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>14</volume><issue>3</issue><spage>119</spage><epage>130</epage><pages>119-130</pages><issn>1364-6613</issn><eissn>1879-307X</eissn><abstract>Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>20153683</pmid><doi>10.1016/j.tics.2010.01.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-6613 |
ispartof | Trends in cognitive sciences, 2010-03, Vol.14 (3), p.119-130 |
issn | 1364-6613 1879-307X |
language | eng |
recordid | cdi_proquest_miscellaneous_745931729 |
source | ScienceDirect Freedom Collection |
subjects | Animals Biological and medical sciences Cerebral Cortex Fundamental and applied biological sciences. Psychology Human Humans Learning Learning. Memory Models, Neurological Models, Statistical Neurology Perception Psychiatry Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Vision |
title | Statistically optimal perception and learning: from behavior to neural representations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistically%20optimal%20perception%20and%20learning:%20from%20behavior%20to%20neural%20representations&rft.jtitle=Trends%20in%20cognitive%20sciences&rft.au=Fiser,%20J%C3%B3zsef&rft.date=2010-03-01&rft.volume=14&rft.issue=3&rft.spage=119&rft.epage=130&rft.pages=119-130&rft.issn=1364-6613&rft.eissn=1879-307X&rft_id=info:doi/10.1016/j.tics.2010.01.003&rft_dat=%3Cproquest_cross%3E733659496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733659496&rft_id=info:pmid/20153683&rfr_iscdi=true |