Loading…

Statistically optimal perception and learning: from behavior to neural representations

Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal...

Full description

Saved in:
Bibliographic Details
Published in:Trends in cognitive sciences 2010-03, Vol.14 (3), p.119-130
Main Authors: Fiser, József, Berkes, Pietro, Orbán, Gergő, Lengyel, Máté
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3
cites cdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3
container_end_page 130
container_issue 3
container_start_page 119
container_title Trends in cognitive sciences
container_volume 14
creator Fiser, József
Berkes, Pietro
Orbán, Gergő
Lengyel, Máté
description Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty.
doi_str_mv 10.1016/j.tics.2010.01.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745931729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1364661310000045</els_id><sourcerecordid>733659496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMo7rr6BzxIX8RTj5XPTosIsvgFCx5WxVvIpCuasSfpTboX5t-bZkYFD5pLivC8RXiqCHlMYUOBque7zRxc2TCoD0A3APwOOae661sO3de7teZKtEpRfkYelLIDoLLr1H1yViOSK83PyZfr2c6h1EZ2HA9Nmuawt2MzYXZY6xQbG4dmRJtjiN9eND6nfbPF7_Y2pNzMqYm45BrIOGUsGNduKZaH5J63Y8FHp_uCfH775tPl-_bq47sPl6-vWic1m1sKToMYOmZ7r0B6JfngBzsgcEcZBSZQaSlR9FtNndeWd06h74Vygm7R8gvy7Nh3yulmwTKbfSgOx9FGTEsxnZA9px3r_09yrmQvelVJdiRdTqVk9GbKVUo-GApmFW92ZhVvVvEGqKnia-jJqf2y3ePwO_LLdAWengBbqmufbXSh_OGYBkm1rNzLI4dV223AbIoLGB0OIaObzZDCv__x6q-4G0Ncp_sDD1h2acmxDsRQU5gBc72uyLohFNYjJP8JvFS3Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733659496</pqid></control><display><type>article</type><title>Statistically optimal perception and learning: from behavior to neural representations</title><source>ScienceDirect Freedom Collection</source><creator>Fiser, József ; Berkes, Pietro ; Orbán, Gergő ; Lengyel, Máté</creator><creatorcontrib>Fiser, József ; Berkes, Pietro ; Orbán, Gergő ; Lengyel, Máté</creatorcontrib><description>Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty.</description><identifier>ISSN: 1364-6613</identifier><identifier>EISSN: 1879-307X</identifier><identifier>DOI: 10.1016/j.tics.2010.01.003</identifier><identifier>PMID: 20153683</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cerebral Cortex ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Learning ; Learning. Memory ; Models, Neurological ; Models, Statistical ; Neurology ; Perception ; Psychiatry ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Vision</subject><ispartof>Trends in cognitive sciences, 2010-03, Vol.14 (3), p.119-130</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</citedby><cites>FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22805185$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20153683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiser, József</creatorcontrib><creatorcontrib>Berkes, Pietro</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><creatorcontrib>Lengyel, Máté</creatorcontrib><title>Statistically optimal perception and learning: from behavior to neural representations</title><title>Trends in cognitive sciences</title><addtitle>Trends Cogn Sci</addtitle><description>Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cerebral Cortex</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning. Memory</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Neurology</subject><subject>Perception</subject><subject>Psychiatry</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Vision</subject><issn>1364-6613</issn><issn>1879-307X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkk2LFDEQhoMo7rr6BzxIX8RTj5XPTosIsvgFCx5WxVvIpCuasSfpTboX5t-bZkYFD5pLivC8RXiqCHlMYUOBque7zRxc2TCoD0A3APwOOae661sO3de7teZKtEpRfkYelLIDoLLr1H1yViOSK83PyZfr2c6h1EZ2HA9Nmuawt2MzYXZY6xQbG4dmRJtjiN9eND6nfbPF7_Y2pNzMqYm45BrIOGUsGNduKZaH5J63Y8FHp_uCfH775tPl-_bq47sPl6-vWic1m1sKToMYOmZ7r0B6JfngBzsgcEcZBSZQaSlR9FtNndeWd06h74Vygm7R8gvy7Nh3yulmwTKbfSgOx9FGTEsxnZA9px3r_09yrmQvelVJdiRdTqVk9GbKVUo-GApmFW92ZhVvVvEGqKnia-jJqf2y3ePwO_LLdAWengBbqmufbXSh_OGYBkm1rNzLI4dV223AbIoLGB0OIaObzZDCv__x6q-4G0Ncp_sDD1h2acmxDsRQU5gBc72uyLohFNYjJP8JvFS3Bw</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Fiser, József</creator><creator>Berkes, Pietro</creator><creator>Orbán, Gergő</creator><creator>Lengyel, Máté</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20100301</creationdate><title>Statistically optimal perception and learning: from behavior to neural representations</title><author>Fiser, József ; Berkes, Pietro ; Orbán, Gergő ; Lengyel, Máté</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cerebral Cortex</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning. Memory</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Neurology</topic><topic>Perception</topic><topic>Psychiatry</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiser, József</creatorcontrib><creatorcontrib>Berkes, Pietro</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><creatorcontrib>Lengyel, Máté</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Trends in cognitive sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiser, József</au><au>Berkes, Pietro</au><au>Orbán, Gergő</au><au>Lengyel, Máté</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistically optimal perception and learning: from behavior to neural representations</atitle><jtitle>Trends in cognitive sciences</jtitle><addtitle>Trends Cogn Sci</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>14</volume><issue>3</issue><spage>119</spage><epage>130</epage><pages>119-130</pages><issn>1364-6613</issn><eissn>1879-307X</eissn><abstract>Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>20153683</pmid><doi>10.1016/j.tics.2010.01.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-6613
ispartof Trends in cognitive sciences, 2010-03, Vol.14 (3), p.119-130
issn 1364-6613
1879-307X
language eng
recordid cdi_proquest_miscellaneous_745931729
source ScienceDirect Freedom Collection
subjects Animals
Biological and medical sciences
Cerebral Cortex
Fundamental and applied biological sciences. Psychology
Human
Humans
Learning
Learning. Memory
Models, Neurological
Models, Statistical
Neurology
Perception
Psychiatry
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Vision
title Statistically optimal perception and learning: from behavior to neural representations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistically%20optimal%20perception%20and%20learning:%20from%20behavior%20to%20neural%20representations&rft.jtitle=Trends%20in%20cognitive%20sciences&rft.au=Fiser,%20J%C3%B3zsef&rft.date=2010-03-01&rft.volume=14&rft.issue=3&rft.spage=119&rft.epage=130&rft.pages=119-130&rft.issn=1364-6613&rft.eissn=1879-307X&rft_id=info:doi/10.1016/j.tics.2010.01.003&rft_dat=%3Cproquest_cross%3E733659496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c582t-10c804d72a9f605f653dfdade03c121024e6855e49b81cf8a37c6ef946c41bea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733659496&rft_id=info:pmid/20153683&rfr_iscdi=true