Loading…
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
A bistable mechanism has two stable states within its range of motion. Its advantages include the ability to stay in two positions without power input and despite small external disturbances. Therefore, bistable micro-mechanisms could allow the creation of MEMS with improved energy efficiency and po...
Saved in:
Published in: | Journal of mechanical design (1990) 1999-09, Vol.121 (3), p.416-423 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A bistable mechanism has two stable states within its range of motion. Its advantages include the ability to stay in two positions without power input and despite small external disturbances. Therefore, bistable micro-mechanisms could allow the creation of MEMS with improved energy efficiency and positioning accuracy. This paper presents bistable micro-mechanisms which function within the plane of fabrication. These bistable mechanisms, called “Young” bistable mechanisms, obtain their energy storage characteristics from the deflection of two compliant members. They have two pin joints connected to the substrate, and can be constructed of two layers of polysilicon. The pseudo-rigid-body model is used to analyze and design these mechanisms. This approach allows greater freedom and flexibility in the design process. The mechanisms were fabricated and tested to demonstrate their bistable behavior and to determine the repeatability of their stable positions. |
---|---|
ISSN: | 1050-0472 1528-9001 |
DOI: | 10.1115/1.2829477 |