Loading…

Linear and non-linear failure analysis of composite laminates with transverse shear

A finite element computational procedure has been developed to find linear and non-linear (von Kármán) first-ply failure loads of composite laminates subjected to in-plane and transverse loads. The finite element model is based on first-order shear deformation theory and several phenomenological fai...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 1992, Vol.44 (3), p.227-255
Main Authors: Reddy, Y.S.N., Reddy, J.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-29aa7f41f3206dbe8f74e4e83161aac10e6a077e41872feb9bc6b9210f8e73983
cites cdi_FETCH-LOGICAL-c332t-29aa7f41f3206dbe8f74e4e83161aac10e6a077e41872feb9bc6b9210f8e73983
container_end_page 255
container_issue 3
container_start_page 227
container_title Composites science and technology
container_volume 44
creator Reddy, Y.S.N.
Reddy, J.N.
description A finite element computational procedure has been developed to find linear and non-linear (von Kármán) first-ply failure loads of composite laminates subjected to in-plane and transverse loads. The finite element model is based on first-order shear deformation theory and several phenomenological failure criteria. Linear and non-linear first-ply failure loads are computed for a uniformly distributed transverse load, a concentrated transverse load acting at the centre of the plate, and a uniformly distributed in-plane edge load for simply supported and clamped boundary conditions. It is found that the failure loads predicted by various failure criteria differ from one another by a maximum of 35% in the case of linearloads and 50% in the case on non-linear loads; the failure locations differ from each other in a random way. Furthermore, it is demonstrated that the difference between the linear and non-linear failure loads is large in the case of transversely loaded simply supported laminates and thin plates. The difference is found to be quite small in the case of in-plane (tensile) loading and thick laminates.
doi_str_mv 10.1016/0266-3538(92)90015-U
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745961715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>026635389290015U</els_id><sourcerecordid>25687237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-29aa7f41f3206dbe8f74e4e83161aac10e6a077e41872feb9bc6b9210f8e73983</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq2qSE1p_wGHPVSUHrb4Y22vL5UQoi1SJA40Z2vijIWrjTd4NiD-PQ6LOHKy7HnemfHD2IngPwUX5pxLY1qlVX_m5A_HudDt6gNbiN66VnDNP7LFG_KJfSb6zzm32skFu12mjFAayJsmj7kd5muENOwL1mcYnihRM8YmjNvdSGnCZoBtyjAhNY9pumumApkesBA2dFfTX9hRhIHw6-t5zFa_r_5d_m2XN3-uLy-WbVBKTq10ADZ2IirJzWaNfbQddtgrYQRAEBwNcGuxq_-QEdduHczaScFjj1a5Xh2z73PfXRnv90iT3yYKOAyQcdyTt512RlihK3n6Lim1qTOUrWA3g6GMRAWj35W0hfLkBfcH1_4g0h9Eeif9i2u_qrFvr_2BAgyxCgmJ3rJaatHrw8InM5aBwOepkBfOSc61FtrU8q-5jFXaQ8LiKSTMATepYJj8Zkzvr_EMiWGbYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25687237</pqid></control><display><type>article</type><title>Linear and non-linear failure analysis of composite laminates with transverse shear</title><source>Backfile Package - Materials Science [YMS]</source><creator>Reddy, Y.S.N. ; Reddy, J.N.</creator><creatorcontrib>Reddy, Y.S.N. ; Reddy, J.N.</creatorcontrib><description>A finite element computational procedure has been developed to find linear and non-linear (von Kármán) first-ply failure loads of composite laminates subjected to in-plane and transverse loads. The finite element model is based on first-order shear deformation theory and several phenomenological failure criteria. Linear and non-linear first-ply failure loads are computed for a uniformly distributed transverse load, a concentrated transverse load acting at the centre of the plate, and a uniformly distributed in-plane edge load for simply supported and clamped boundary conditions. It is found that the failure loads predicted by various failure criteria differ from one another by a maximum of 35% in the case of linearloads and 50% in the case on non-linear loads; the failure locations differ from each other in a random way. Furthermore, it is demonstrated that the difference between the linear and non-linear failure loads is large in the case of transversely loaded simply supported laminates and thin plates. The difference is found to be quite small in the case of in-plane (tensile) loading and thick laminates.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/0266-3538(92)90015-U</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Ltd</publisher><subject>Applied sciences ; composite laminate ; composite materials ; Exact sciences and technology ; failure ; finite element method ; first-ply failure load ; Forms of application and semi-finished materials ; Laminates ; loading ; non-linear failure analysis ; phenomenological failure criteria ; Polymer industry, paints, wood ; shear strength ; Structural Mechanics ; Technology of polymers ; transverse shear</subject><ispartof>Composites science and technology, 1992, Vol.44 (3), p.227-255</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-29aa7f41f3206dbe8f74e4e83161aac10e6a077e41872feb9bc6b9210f8e73983</citedby><cites>FETCH-LOGICAL-c332t-29aa7f41f3206dbe8f74e4e83161aac10e6a077e41872feb9bc6b9210f8e73983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/026635389290015U$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3555,4024,27923,27924,27925,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5251858$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reddy, Y.S.N.</creatorcontrib><creatorcontrib>Reddy, J.N.</creatorcontrib><title>Linear and non-linear failure analysis of composite laminates with transverse shear</title><title>Composites science and technology</title><description>A finite element computational procedure has been developed to find linear and non-linear (von Kármán) first-ply failure loads of composite laminates subjected to in-plane and transverse loads. The finite element model is based on first-order shear deformation theory and several phenomenological failure criteria. Linear and non-linear first-ply failure loads are computed for a uniformly distributed transverse load, a concentrated transverse load acting at the centre of the plate, and a uniformly distributed in-plane edge load for simply supported and clamped boundary conditions. It is found that the failure loads predicted by various failure criteria differ from one another by a maximum of 35% in the case of linearloads and 50% in the case on non-linear loads; the failure locations differ from each other in a random way. Furthermore, it is demonstrated that the difference between the linear and non-linear failure loads is large in the case of transversely loaded simply supported laminates and thin plates. The difference is found to be quite small in the case of in-plane (tensile) loading and thick laminates.</description><subject>Applied sciences</subject><subject>composite laminate</subject><subject>composite materials</subject><subject>Exact sciences and technology</subject><subject>failure</subject><subject>finite element method</subject><subject>first-ply failure load</subject><subject>Forms of application and semi-finished materials</subject><subject>Laminates</subject><subject>loading</subject><subject>non-linear failure analysis</subject><subject>phenomenological failure criteria</subject><subject>Polymer industry, paints, wood</subject><subject>shear strength</subject><subject>Structural Mechanics</subject><subject>Technology of polymers</subject><subject>transverse shear</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PGzEQhq2qSE1p_wGHPVSUHrb4Y22vL5UQoi1SJA40Z2vijIWrjTd4NiD-PQ6LOHKy7HnemfHD2IngPwUX5pxLY1qlVX_m5A_HudDt6gNbiN66VnDNP7LFG_KJfSb6zzm32skFu12mjFAayJsmj7kd5muENOwL1mcYnihRM8YmjNvdSGnCZoBtyjAhNY9pumumApkesBA2dFfTX9hRhIHw6-t5zFa_r_5d_m2XN3-uLy-WbVBKTq10ADZ2IirJzWaNfbQddtgrYQRAEBwNcGuxq_-QEdduHczaScFjj1a5Xh2z73PfXRnv90iT3yYKOAyQcdyTt512RlihK3n6Lim1qTOUrWA3g6GMRAWj35W0hfLkBfcH1_4g0h9Eeif9i2u_qrFvr_2BAgyxCgmJ3rJaatHrw8InM5aBwOepkBfOSc61FtrU8q-5jFXaQ8LiKSTMATepYJj8Zkzvr_EMiWGbYQ</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Reddy, Y.S.N.</creator><creator>Reddy, J.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>1992</creationdate><title>Linear and non-linear failure analysis of composite laminates with transverse shear</title><author>Reddy, Y.S.N. ; Reddy, J.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-29aa7f41f3206dbe8f74e4e83161aac10e6a077e41872feb9bc6b9210f8e73983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>composite laminate</topic><topic>composite materials</topic><topic>Exact sciences and technology</topic><topic>failure</topic><topic>finite element method</topic><topic>first-ply failure load</topic><topic>Forms of application and semi-finished materials</topic><topic>Laminates</topic><topic>loading</topic><topic>non-linear failure analysis</topic><topic>phenomenological failure criteria</topic><topic>Polymer industry, paints, wood</topic><topic>shear strength</topic><topic>Structural Mechanics</topic><topic>Technology of polymers</topic><topic>transverse shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Y.S.N.</creatorcontrib><creatorcontrib>Reddy, J.N.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, Y.S.N.</au><au>Reddy, J.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and non-linear failure analysis of composite laminates with transverse shear</atitle><jtitle>Composites science and technology</jtitle><date>1992</date><risdate>1992</risdate><volume>44</volume><issue>3</issue><spage>227</spage><epage>255</epage><pages>227-255</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>A finite element computational procedure has been developed to find linear and non-linear (von Kármán) first-ply failure loads of composite laminates subjected to in-plane and transverse loads. The finite element model is based on first-order shear deformation theory and several phenomenological failure criteria. Linear and non-linear first-ply failure loads are computed for a uniformly distributed transverse load, a concentrated transverse load acting at the centre of the plate, and a uniformly distributed in-plane edge load for simply supported and clamped boundary conditions. It is found that the failure loads predicted by various failure criteria differ from one another by a maximum of 35% in the case of linearloads and 50% in the case on non-linear loads; the failure locations differ from each other in a random way. Furthermore, it is demonstrated that the difference between the linear and non-linear failure loads is large in the case of transversely loaded simply supported laminates and thin plates. The difference is found to be quite small in the case of in-plane (tensile) loading and thick laminates.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Ltd</pub><doi>10.1016/0266-3538(92)90015-U</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 1992, Vol.44 (3), p.227-255
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_745961715
source Backfile Package - Materials Science [YMS]
subjects Applied sciences
composite laminate
composite materials
Exact sciences and technology
failure
finite element method
first-ply failure load
Forms of application and semi-finished materials
Laminates
loading
non-linear failure analysis
phenomenological failure criteria
Polymer industry, paints, wood
shear strength
Structural Mechanics
Technology of polymers
transverse shear
title Linear and non-linear failure analysis of composite laminates with transverse shear
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20non-linear%20failure%20analysis%20of%20composite%20laminates%20with%20transverse%20shear&rft.jtitle=Composites%20science%20and%20technology&rft.au=Reddy,%20Y.S.N.&rft.date=1992&rft.volume=44&rft.issue=3&rft.spage=227&rft.epage=255&rft.pages=227-255&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/0266-3538(92)90015-U&rft_dat=%3Cproquest_cross%3E25687237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-29aa7f41f3206dbe8f74e4e83161aac10e6a077e41872feb9bc6b9210f8e73983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25687237&rft_id=info:pmid/&rfr_iscdi=true