Loading…
Experimental and Theoretical Studies of Mist Jet Impingement Cooling
Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a squa...
Saved in:
Published in: | Journal of heat transfer 1996-05, Vol.118 (2), p.343-349 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a374t-12d1c3e4b54adbb4b38de145107fd324ff725db1fe22929939fa578f463b9d673 |
---|---|
cites | cdi_FETCH-LOGICAL-a374t-12d1c3e4b54adbb4b38de145107fd324ff725db1fe22929939fa578f463b9d673 |
container_end_page | 349 |
container_issue | 2 |
container_start_page | 343 |
container_title | Journal of heat transfer |
container_volume | 118 |
creator | Graham, K. M Ramadhyani, S |
description | Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a square of side 6.35 mm. Experimental data were obtained with mists of both methanol and water. Surface-averaged heat fluxes as high as 60 W/cm2 could be dissipated with the methanol/air mist while maintaining the target surface below 70°C. With the water/air mist, a heat flux of 60 W/cm2 could be dissipated with the target surface at 80°C. Major trends in the data and model predictions have been explained in terms of the underlying hydrodynamic and heat transfer phenomena. |
doi_str_mv | 10.1115/1.2825850 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745964090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745964090</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-12d1c3e4b54adbb4b38de145107fd324ff725db1fe22929939fa578f463b9d673</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoOKcHz156EMRDZ7750SZHmVMnEw_Oc0ibRDu6piYt6H9vxoanx4PPe_AeQpeAZwDA72BGBOGC4yM0AU5ELiSjx2iCMSE5MAGn6CzGDcZAKZMT9LD46W1otrYbdJvpzmTrL-uDHZo6-fdhNI2NmXfZaxOH7MUO2XLbN92n3SWyufdtMufoxOk22ouDTtHH42I9f85Xb0_L-f0q17RkQw7EQE0tqzjTpqpYRYWxwDjg0hlKmHMl4aYCZwmRREoqnealcKyglTRFSafoZt_bB_892jiobRNr27a6s36MqmRcFgxLnMjbPVkHH2OwTvVppA6_CrDaHaVAHY5K7PWhVcc02gXd1U38D1DAhJYiYVd7TMetVRs_hi5tVQxYUXD6B1aAb0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745964090</pqid></control><display><type>article</type><title>Experimental and Theoretical Studies of Mist Jet Impingement Cooling</title><source>ASME_美国机械工程师学会过刊</source><creator>Graham, K. M ; Ramadhyani, S</creator><creatorcontrib>Graham, K. M ; Ramadhyani, S</creatorcontrib><description>Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a square of side 6.35 mm. Experimental data were obtained with mists of both methanol and water. Surface-averaged heat fluxes as high as 60 W/cm2 could be dissipated with the methanol/air mist while maintaining the target surface below 70°C. With the water/air mist, a heat flux of 60 W/cm2 could be dissipated with the target surface at 80°C. Major trends in the data and model predictions have been explained in terms of the underlying hydrodynamic and heat transfer phenomena.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.2825850</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Air ; Atomizers ; Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat flux ; Heat losses ; Heat transfer ; Hydrodynamics ; Jets ; Mathematical models ; Methanol ; Physics ; Surfaces ; Turbulent flows, convection, and heat transfer ; Velocity ; Water</subject><ispartof>Journal of heat transfer, 1996-05, Vol.118 (2), p.343-349</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-12d1c3e4b54adbb4b38de145107fd324ff725db1fe22929939fa578f463b9d673</citedby><cites>FETCH-LOGICAL-a374t-12d1c3e4b54adbb4b38de145107fd324ff725db1fe22929939fa578f463b9d673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3102378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, K. M</creatorcontrib><creatorcontrib>Ramadhyani, S</creatorcontrib><title>Experimental and Theoretical Studies of Mist Jet Impingement Cooling</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a square of side 6.35 mm. Experimental data were obtained with mists of both methanol and water. Surface-averaged heat fluxes as high as 60 W/cm2 could be dissipated with the methanol/air mist while maintaining the target surface below 70°C. With the water/air mist, a heat flux of 60 W/cm2 could be dissipated with the target surface at 80°C. Major trends in the data and model predictions have been explained in terms of the underlying hydrodynamic and heat transfer phenomena.</description><subject>Air</subject><subject>Atomizers</subject><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat flux</subject><subject>Heat losses</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Jets</subject><subject>Mathematical models</subject><subject>Methanol</subject><subject>Physics</subject><subject>Surfaces</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity</subject><subject>Water</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAcxYMoOKcHz156EMRDZ7750SZHmVMnEw_Oc0ibRDu6piYt6H9vxoanx4PPe_AeQpeAZwDA72BGBOGC4yM0AU5ELiSjx2iCMSE5MAGn6CzGDcZAKZMT9LD46W1otrYbdJvpzmTrL-uDHZo6-fdhNI2NmXfZaxOH7MUO2XLbN92n3SWyufdtMufoxOk22ouDTtHH42I9f85Xb0_L-f0q17RkQw7EQE0tqzjTpqpYRYWxwDjg0hlKmHMl4aYCZwmRREoqnealcKyglTRFSafoZt_bB_892jiobRNr27a6s36MqmRcFgxLnMjbPVkHH2OwTvVppA6_CrDaHaVAHY5K7PWhVcc02gXd1U38D1DAhJYiYVd7TMetVRs_hi5tVQxYUXD6B1aAb0E</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Graham, K. M</creator><creator>Ramadhyani, S</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19960501</creationdate><title>Experimental and Theoretical Studies of Mist Jet Impingement Cooling</title><author>Graham, K. M ; Ramadhyani, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-12d1c3e4b54adbb4b38de145107fd324ff725db1fe22929939fa578f463b9d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Air</topic><topic>Atomizers</topic><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat flux</topic><topic>Heat losses</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Jets</topic><topic>Mathematical models</topic><topic>Methanol</topic><topic>Physics</topic><topic>Surfaces</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, K. M</creatorcontrib><creatorcontrib>Ramadhyani, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, K. M</au><au>Ramadhyani, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Theoretical Studies of Mist Jet Impingement Cooling</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>118</volume><issue>2</issue><spage>343</spage><epage>349</epage><pages>343-349</pages><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a square of side 6.35 mm. Experimental data were obtained with mists of both methanol and water. Surface-averaged heat fluxes as high as 60 W/cm2 could be dissipated with the methanol/air mist while maintaining the target surface below 70°C. With the water/air mist, a heat flux of 60 W/cm2 could be dissipated with the target surface at 80°C. Major trends in the data and model predictions have been explained in terms of the underlying hydrodynamic and heat transfer phenomena.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2825850</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1481 |
ispartof | Journal of heat transfer, 1996-05, Vol.118 (2), p.343-349 |
issn | 0022-1481 1528-8943 |
language | eng |
recordid | cdi_proquest_miscellaneous_745964090 |
source | ASME_美国机械工程师学会过刊 |
subjects | Air Atomizers Convection and heat transfer Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Heat flux Heat losses Heat transfer Hydrodynamics Jets Mathematical models Methanol Physics Surfaces Turbulent flows, convection, and heat transfer Velocity Water |
title | Experimental and Theoretical Studies of Mist Jet Impingement Cooling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Theoretical%20Studies%20of%20Mist%20Jet%20Impingement%20Cooling&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Graham,%20K.%20M&rft.date=1996-05-01&rft.volume=118&rft.issue=2&rft.spage=343&rft.epage=349&rft.pages=343-349&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.2825850&rft_dat=%3Cproquest_cross%3E745964090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-12d1c3e4b54adbb4b38de145107fd324ff725db1fe22929939fa578f463b9d673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=745964090&rft_id=info:pmid/&rfr_iscdi=true |