Loading…
Evolution of the Antarctic teleost immunoglobulin heavy chain gene
Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarcti...
Saved in:
Published in: | Molecular phylogenetics and evolution 2010-04, Vol.55 (1), p.226-233 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293 |
container_end_page | 233 |
container_issue | 1 |
container_start_page | 226 |
container_title | Molecular phylogenetics and evolution |
container_volume | 55 |
creator | Coscia, Maria Rosaria Varriale, Sonia De Santi, Concetta Giacomelli, Stefano Oreste, Umberto |
description | Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD. |
doi_str_mv | 10.1016/j.ympev.2009.09.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746006390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105579030900390X</els_id><sourcerecordid>746006390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoflR_gSB708vWfDRJc_CgUj9A8KLnkCaTNmV3UzfZQv-9u7bgTWFg3sPzzjDzInRJ8JhgIm5X4229hs2YYqzGQzF2gE4JVrxUnLDDQXNeSoXZCTpLaYUxIVzxY3RC1LQ3SXmKHmabWHU5xKaIvshLKO6bbFqbgy0yVBBTLkJdd01cVHHeVaEplmA228IuTa8X0MA5OvKmSnCx7yP0-TT7eHwp396fXx_v30o7oSyXlhoxt45IEMZZT6j3jBI7cd5wDpZOrHRmKuaCTI1ywgER3Ehvpp4zw6hiI3S9m7tu41cHKes6JAtVZRqIXdJyIjAWrD_3X5IxIanioidv_iSJlJhhQQXpUbZDbRtTasHrdRtq0241wXoIRK_0TyB6CEQPxVjvutov6OY1uF_PPoEeuNsB0L9uE6DVyQZoLLjQgs3axfDngm-2Y53Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770306261</pqid></control><display><type>article</type><title>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</title><source>ScienceDirect Freedom Collection</source><creator>Coscia, Maria Rosaria ; Varriale, Sonia ; De Santi, Concetta ; Giacomelli, Stefano ; Oreste, Umberto</creator><creatorcontrib>Coscia, Maria Rosaria ; Varriale, Sonia ; De Santi, Concetta ; Giacomelli, Stefano ; Oreste, Umberto</creatorcontrib><description>Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.</description><identifier>ISSN: 1055-7903</identifier><identifier>EISSN: 1095-9513</identifier><identifier>DOI: 10.1016/j.ympev.2009.09.033</identifier><identifier>PMID: 19800977</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alternative mRNA splicing ; Amino acids ; Animals ; Antarctic teleost evolution ; Antarctica ; Base Sequence ; Chains ; Cold adaptation ; Cold Temperature ; Computational Biology ; Encoding ; Evolution ; Evolution, Molecular ; Exons ; Fishes - classification ; Fishes - genetics ; Genes, Immunoglobulin Heavy Chain ; Genomes ; Immunoglobulin gene structure ; Immunoglobulin Heavy Chains - genetics ; Immunoglobulin M - genetics ; Immunoglobulins ; Inclusions ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Notothenioidei ; RNA Splicing ; Sequence Alignment ; Sequence Analysis, DNA ; Teleostei</subject><ispartof>Molecular phylogenetics and evolution, 2010-04, Vol.55 (1), p.226-233</ispartof><rights>2009 Elsevier Inc.</rights><rights>(c) 2009 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</citedby><cites>FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19800977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coscia, Maria Rosaria</creatorcontrib><creatorcontrib>Varriale, Sonia</creatorcontrib><creatorcontrib>De Santi, Concetta</creatorcontrib><creatorcontrib>Giacomelli, Stefano</creatorcontrib><creatorcontrib>Oreste, Umberto</creatorcontrib><title>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</title><title>Molecular phylogenetics and evolution</title><addtitle>Mol Phylogenet Evol</addtitle><description>Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.</description><subject>Alternative mRNA splicing</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antarctic teleost evolution</subject><subject>Antarctica</subject><subject>Base Sequence</subject><subject>Chains</subject><subject>Cold adaptation</subject><subject>Cold Temperature</subject><subject>Computational Biology</subject><subject>Encoding</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Exons</subject><subject>Fishes - classification</subject><subject>Fishes - genetics</subject><subject>Genes, Immunoglobulin Heavy Chain</subject><subject>Genomes</subject><subject>Immunoglobulin gene structure</subject><subject>Immunoglobulin Heavy Chains - genetics</subject><subject>Immunoglobulin M - genetics</subject><subject>Immunoglobulins</subject><subject>Inclusions</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Notothenioidei</subject><subject>RNA Splicing</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Teleostei</subject><issn>1055-7903</issn><issn>1095-9513</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoflR_gSB708vWfDRJc_CgUj9A8KLnkCaTNmV3UzfZQv-9u7bgTWFg3sPzzjDzInRJ8JhgIm5X4229hs2YYqzGQzF2gE4JVrxUnLDDQXNeSoXZCTpLaYUxIVzxY3RC1LQ3SXmKHmabWHU5xKaIvshLKO6bbFqbgy0yVBBTLkJdd01cVHHeVaEplmA228IuTa8X0MA5OvKmSnCx7yP0-TT7eHwp396fXx_v30o7oSyXlhoxt45IEMZZT6j3jBI7cd5wDpZOrHRmKuaCTI1ywgER3Ehvpp4zw6hiI3S9m7tu41cHKes6JAtVZRqIXdJyIjAWrD_3X5IxIanioidv_iSJlJhhQQXpUbZDbRtTasHrdRtq0241wXoIRK_0TyB6CEQPxVjvutov6OY1uF_PPoEeuNsB0L9uE6DVyQZoLLjQgs3axfDngm-2Y53Z</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Coscia, Maria Rosaria</creator><creator>Varriale, Sonia</creator><creator>De Santi, Concetta</creator><creator>Giacomelli, Stefano</creator><creator>Oreste, Umberto</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7T5</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201004</creationdate><title>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</title><author>Coscia, Maria Rosaria ; Varriale, Sonia ; De Santi, Concetta ; Giacomelli, Stefano ; Oreste, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative mRNA splicing</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antarctic teleost evolution</topic><topic>Antarctica</topic><topic>Base Sequence</topic><topic>Chains</topic><topic>Cold adaptation</topic><topic>Cold Temperature</topic><topic>Computational Biology</topic><topic>Encoding</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Exons</topic><topic>Fishes - classification</topic><topic>Fishes - genetics</topic><topic>Genes, Immunoglobulin Heavy Chain</topic><topic>Genomes</topic><topic>Immunoglobulin gene structure</topic><topic>Immunoglobulin Heavy Chains - genetics</topic><topic>Immunoglobulin M - genetics</topic><topic>Immunoglobulins</topic><topic>Inclusions</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Notothenioidei</topic><topic>RNA Splicing</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Teleostei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coscia, Maria Rosaria</creatorcontrib><creatorcontrib>Varriale, Sonia</creatorcontrib><creatorcontrib>De Santi, Concetta</creatorcontrib><creatorcontrib>Giacomelli, Stefano</creatorcontrib><creatorcontrib>Oreste, Umberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Molecular phylogenetics and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coscia, Maria Rosaria</au><au>Varriale, Sonia</au><au>De Santi, Concetta</au><au>Giacomelli, Stefano</au><au>Oreste, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</atitle><jtitle>Molecular phylogenetics and evolution</jtitle><addtitle>Mol Phylogenet Evol</addtitle><date>2010-04</date><risdate>2010</risdate><volume>55</volume><issue>1</issue><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>1055-7903</issn><eissn>1095-9513</eissn><abstract>Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19800977</pmid><doi>10.1016/j.ympev.2009.09.033</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1055-7903 |
ispartof | Molecular phylogenetics and evolution, 2010-04, Vol.55 (1), p.226-233 |
issn | 1055-7903 1095-9513 |
language | eng |
recordid | cdi_proquest_miscellaneous_746006390 |
source | ScienceDirect Freedom Collection |
subjects | Alternative mRNA splicing Amino acids Animals Antarctic teleost evolution Antarctica Base Sequence Chains Cold adaptation Cold Temperature Computational Biology Encoding Evolution Evolution, Molecular Exons Fishes - classification Fishes - genetics Genes, Immunoglobulin Heavy Chain Genomes Immunoglobulin gene structure Immunoglobulin Heavy Chains - genetics Immunoglobulin M - genetics Immunoglobulins Inclusions Models, Genetic Models, Molecular Molecular Sequence Data Notothenioidei RNA Splicing Sequence Alignment Sequence Analysis, DNA Teleostei |
title | Evolution of the Antarctic teleost immunoglobulin heavy chain gene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Antarctic%20teleost%20immunoglobulin%20heavy%20chain%20gene&rft.jtitle=Molecular%20phylogenetics%20and%20evolution&rft.au=Coscia,%20Maria%20Rosaria&rft.date=2010-04&rft.volume=55&rft.issue=1&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=1055-7903&rft.eissn=1095-9513&rft_id=info:doi/10.1016/j.ympev.2009.09.033&rft_dat=%3Cproquest_cross%3E746006390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770306261&rft_id=info:pmid/19800977&rfr_iscdi=true |