Loading…

Evolution of the Antarctic teleost immunoglobulin heavy chain gene

Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarcti...

Full description

Saved in:
Bibliographic Details
Published in:Molecular phylogenetics and evolution 2010-04, Vol.55 (1), p.226-233
Main Authors: Coscia, Maria Rosaria, Varriale, Sonia, De Santi, Concetta, Giacomelli, Stefano, Oreste, Umberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293
cites cdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293
container_end_page 233
container_issue 1
container_start_page 226
container_title Molecular phylogenetics and evolution
container_volume 55
creator Coscia, Maria Rosaria
Varriale, Sonia
De Santi, Concetta
Giacomelli, Stefano
Oreste, Umberto
description Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.
doi_str_mv 10.1016/j.ympev.2009.09.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746006390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105579030900390X</els_id><sourcerecordid>746006390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoflR_gSB708vWfDRJc_CgUj9A8KLnkCaTNmV3UzfZQv-9u7bgTWFg3sPzzjDzInRJ8JhgIm5X4229hs2YYqzGQzF2gE4JVrxUnLDDQXNeSoXZCTpLaYUxIVzxY3RC1LQ3SXmKHmabWHU5xKaIvshLKO6bbFqbgy0yVBBTLkJdd01cVHHeVaEplmA228IuTa8X0MA5OvKmSnCx7yP0-TT7eHwp396fXx_v30o7oSyXlhoxt45IEMZZT6j3jBI7cd5wDpZOrHRmKuaCTI1ywgER3Ehvpp4zw6hiI3S9m7tu41cHKes6JAtVZRqIXdJyIjAWrD_3X5IxIanioidv_iSJlJhhQQXpUbZDbRtTasHrdRtq0241wXoIRK_0TyB6CEQPxVjvutov6OY1uF_PPoEeuNsB0L9uE6DVyQZoLLjQgs3axfDngm-2Y53Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770306261</pqid></control><display><type>article</type><title>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</title><source>ScienceDirect Freedom Collection</source><creator>Coscia, Maria Rosaria ; Varriale, Sonia ; De Santi, Concetta ; Giacomelli, Stefano ; Oreste, Umberto</creator><creatorcontrib>Coscia, Maria Rosaria ; Varriale, Sonia ; De Santi, Concetta ; Giacomelli, Stefano ; Oreste, Umberto</creatorcontrib><description>Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.</description><identifier>ISSN: 1055-7903</identifier><identifier>EISSN: 1095-9513</identifier><identifier>DOI: 10.1016/j.ympev.2009.09.033</identifier><identifier>PMID: 19800977</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alternative mRNA splicing ; Amino acids ; Animals ; Antarctic teleost evolution ; Antarctica ; Base Sequence ; Chains ; Cold adaptation ; Cold Temperature ; Computational Biology ; Encoding ; Evolution ; Evolution, Molecular ; Exons ; Fishes - classification ; Fishes - genetics ; Genes, Immunoglobulin Heavy Chain ; Genomes ; Immunoglobulin gene structure ; Immunoglobulin Heavy Chains - genetics ; Immunoglobulin M - genetics ; Immunoglobulins ; Inclusions ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Notothenioidei ; RNA Splicing ; Sequence Alignment ; Sequence Analysis, DNA ; Teleostei</subject><ispartof>Molecular phylogenetics and evolution, 2010-04, Vol.55 (1), p.226-233</ispartof><rights>2009 Elsevier Inc.</rights><rights>(c) 2009 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</citedby><cites>FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19800977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coscia, Maria Rosaria</creatorcontrib><creatorcontrib>Varriale, Sonia</creatorcontrib><creatorcontrib>De Santi, Concetta</creatorcontrib><creatorcontrib>Giacomelli, Stefano</creatorcontrib><creatorcontrib>Oreste, Umberto</creatorcontrib><title>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</title><title>Molecular phylogenetics and evolution</title><addtitle>Mol Phylogenet Evol</addtitle><description>Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.</description><subject>Alternative mRNA splicing</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antarctic teleost evolution</subject><subject>Antarctica</subject><subject>Base Sequence</subject><subject>Chains</subject><subject>Cold adaptation</subject><subject>Cold Temperature</subject><subject>Computational Biology</subject><subject>Encoding</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Exons</subject><subject>Fishes - classification</subject><subject>Fishes - genetics</subject><subject>Genes, Immunoglobulin Heavy Chain</subject><subject>Genomes</subject><subject>Immunoglobulin gene structure</subject><subject>Immunoglobulin Heavy Chains - genetics</subject><subject>Immunoglobulin M - genetics</subject><subject>Immunoglobulins</subject><subject>Inclusions</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Notothenioidei</subject><subject>RNA Splicing</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Teleostei</subject><issn>1055-7903</issn><issn>1095-9513</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoflR_gSB708vWfDRJc_CgUj9A8KLnkCaTNmV3UzfZQv-9u7bgTWFg3sPzzjDzInRJ8JhgIm5X4229hs2YYqzGQzF2gE4JVrxUnLDDQXNeSoXZCTpLaYUxIVzxY3RC1LQ3SXmKHmabWHU5xKaIvshLKO6bbFqbgy0yVBBTLkJdd01cVHHeVaEplmA228IuTa8X0MA5OvKmSnCx7yP0-TT7eHwp396fXx_v30o7oSyXlhoxt45IEMZZT6j3jBI7cd5wDpZOrHRmKuaCTI1ywgER3Ehvpp4zw6hiI3S9m7tu41cHKes6JAtVZRqIXdJyIjAWrD_3X5IxIanioidv_iSJlJhhQQXpUbZDbRtTasHrdRtq0241wXoIRK_0TyB6CEQPxVjvutov6OY1uF_PPoEeuNsB0L9uE6DVyQZoLLjQgs3axfDngm-2Y53Z</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Coscia, Maria Rosaria</creator><creator>Varriale, Sonia</creator><creator>De Santi, Concetta</creator><creator>Giacomelli, Stefano</creator><creator>Oreste, Umberto</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7T5</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201004</creationdate><title>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</title><author>Coscia, Maria Rosaria ; Varriale, Sonia ; De Santi, Concetta ; Giacomelli, Stefano ; Oreste, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative mRNA splicing</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antarctic teleost evolution</topic><topic>Antarctica</topic><topic>Base Sequence</topic><topic>Chains</topic><topic>Cold adaptation</topic><topic>Cold Temperature</topic><topic>Computational Biology</topic><topic>Encoding</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Exons</topic><topic>Fishes - classification</topic><topic>Fishes - genetics</topic><topic>Genes, Immunoglobulin Heavy Chain</topic><topic>Genomes</topic><topic>Immunoglobulin gene structure</topic><topic>Immunoglobulin Heavy Chains - genetics</topic><topic>Immunoglobulin M - genetics</topic><topic>Immunoglobulins</topic><topic>Inclusions</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Notothenioidei</topic><topic>RNA Splicing</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Teleostei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coscia, Maria Rosaria</creatorcontrib><creatorcontrib>Varriale, Sonia</creatorcontrib><creatorcontrib>De Santi, Concetta</creatorcontrib><creatorcontrib>Giacomelli, Stefano</creatorcontrib><creatorcontrib>Oreste, Umberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Molecular phylogenetics and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coscia, Maria Rosaria</au><au>Varriale, Sonia</au><au>De Santi, Concetta</au><au>Giacomelli, Stefano</au><au>Oreste, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Antarctic teleost immunoglobulin heavy chain gene</atitle><jtitle>Molecular phylogenetics and evolution</jtitle><addtitle>Mol Phylogenet Evol</addtitle><date>2010-04</date><risdate>2010</risdate><volume>55</volume><issue>1</issue><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>1055-7903</issn><eissn>1095-9513</eissn><abstract>Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19800977</pmid><doi>10.1016/j.ympev.2009.09.033</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1055-7903
ispartof Molecular phylogenetics and evolution, 2010-04, Vol.55 (1), p.226-233
issn 1055-7903
1095-9513
language eng
recordid cdi_proquest_miscellaneous_746006390
source ScienceDirect Freedom Collection
subjects Alternative mRNA splicing
Amino acids
Animals
Antarctic teleost evolution
Antarctica
Base Sequence
Chains
Cold adaptation
Cold Temperature
Computational Biology
Encoding
Evolution
Evolution, Molecular
Exons
Fishes - classification
Fishes - genetics
Genes, Immunoglobulin Heavy Chain
Genomes
Immunoglobulin gene structure
Immunoglobulin Heavy Chains - genetics
Immunoglobulin M - genetics
Immunoglobulins
Inclusions
Models, Genetic
Models, Molecular
Molecular Sequence Data
Notothenioidei
RNA Splicing
Sequence Alignment
Sequence Analysis, DNA
Teleostei
title Evolution of the Antarctic teleost immunoglobulin heavy chain gene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Antarctic%20teleost%20immunoglobulin%20heavy%20chain%20gene&rft.jtitle=Molecular%20phylogenetics%20and%20evolution&rft.au=Coscia,%20Maria%20Rosaria&rft.date=2010-04&rft.volume=55&rft.issue=1&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=1055-7903&rft.eissn=1095-9513&rft_id=info:doi/10.1016/j.ympev.2009.09.033&rft_dat=%3Cproquest_cross%3E746006390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-c2a6bcd17e6adcf12ff321c4dfa55ec24c7da86b618a9d6de165a7fa8f53a3293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770306261&rft_id=info:pmid/19800977&rfr_iscdi=true