Loading…
Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L
Nitric oxide (NO) as a key signaling molecule has been involved in mediation of various biotic and abiotic stress-induced physiological responses in plants. In the present study, we investigated the effect of NO on Cassia tora L. plants exposed to aluminum (Al). Plants pre-treated for 12 h with 0.4...
Saved in:
Published in: | Plant and cell physiology 2005-12, Vol.46 (12), p.1915-1923 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nitric oxide (NO) as a key signaling molecule has been involved in mediation of various biotic and abiotic stress-induced physiological responses in plants. In the present study, we investigated the effect of NO on Cassia tora L. plants exposed to aluminum (Al). Plants pre-treated for 12 h with 0.4 mM sodium nitroprusside (SNP), an NO donor, and subsequently exposed to 10 muM Al treatment for 24 h exhibited significantly greater root elongation as compared with the plants without SNP treatment. The NO-promoted root elongation was correlated with a decrease in Al accumulation in root apexes. Furthermore, oxidative stress associated with Al treatment increased lipid peroxidation and reactive oxygen species, and the activation of lipoxygenase and antioxidant enzymes was reduced by NO. Such effects were confirmed by the histochemical staining for the detection of peroxidation of lipids and loss of membrane integrity in roots. The ameliorating effect of NO was specific, because the NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] completely reversed the effect of NO on root growth in the presence of Al. These results indicate that NO plays an important role in protecting the plant against Al-induced oxidative stress. |
---|---|
ISSN: | 0032-0781 1471-9053 |
DOI: | 10.1093/pcp/pci202 |