Loading…

Synthesis, characterization and controlled release of cephalexin drug from smart poly(2-hydroxyethyl methacrylate/poly(alkylene glycol)(meth)acrylates hydrogels

In this work, novel hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and different poly(alkylene glycol)(meth)acrylates (BIS) were prepared by radiation-induced copolymerization. The influence of different BIS types with variation in chain length, based on ethylene glycol (EG) and/or propylene...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2010-06, Vol.160 (2), p.801-809
Main Authors: Tomic, Simonida LJ, Micic, Maja M, Filipovic, Jovanka M, Suljovrujic, Edin H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, novel hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and different poly(alkylene glycol)(meth)acrylates (BIS) were prepared by radiation-induced copolymerization. The influence of different BIS types with variation in chain length, based on ethylene glycol (EG) and/or propylene glycol (PG) pendant units, on the nature and inherent properties of P(HEMA/BIS) copolymeric hydrogels was the main idea of this paper. Swelling studies were conducted for all types of P(HEMA/BIS) copolymeric hydrogels in a wide pH and temperature range. Additional characterization of structure, morphology and thermal behaviour of the obtained hydrogels was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric (TG) analysis. The modelling of drug release and diffusion characteristics was tested using cephalexin (CEX). The results indicate that P(HEMA/BIS) hydrogels’ properties are significantly dependent on the type of BIS. The hydrogels with ethylene glycol (EG) pendant chains show a noticeable pH and/or temperature sensitivity and can be considered smart hydrogels. The introduction of propylene glycol (PG) units, pure and mixed with ethylene glycol (EG) pendant chains, can additionally tune the characteristics of such gels. Furthermore, drug release studies indicate that these types of P(HEMA/BIS) copolymeric hydrogels are suitable candidates for controlled drug release systems.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2010.03.089