Loading…

Confirmation of general relativity on large scales from weak lensing and galaxy velocities

Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, EG, that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2010-03, Vol.464 (7286), p.256-258
Main Authors: Baldauf, Tobias, Smith, Robert E, Lombriser, Lucas, Seljak, Uros, Reyes, Reinabelle, Mandelbaum, Rachel, Gunn, James E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, EG, that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to ‘galaxy bias’ (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of EG different from the general relativistic prediction because, in these theories, the ‘gravitational slip’ (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that EG = 0.39 ± 0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of EG   0.4. The measured value excludes a model within the tensor–vector–scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f() theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature08857