Loading…

A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone

Foam in porous media is discontinuous on a length scale that overlaps with pore dimensions. This foam-bubble microstructure determines the flow behavior of foam in porous media and, in turn, the flow of gas and liquid. Modeling of foam displacement has been frustrated because empirical extensions of...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 1995, Vol.50 (23), p.3783-3799
Main Authors: Kovscek, A.R., Patzek, T.W., Radke, C.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-dd47f29621357d0779e1ca67a2d2916c78e67a3332f86583c0619e04fc0348703
cites cdi_FETCH-LOGICAL-c549t-dd47f29621357d0779e1ca67a2d2916c78e67a3332f86583c0619e04fc0348703
container_end_page 3799
container_issue 23
container_start_page 3783
container_title Chemical engineering science
container_volume 50
creator Kovscek, A.R.
Patzek, T.W.
Radke, C.J.
description Foam in porous media is discontinuous on a length scale that overlaps with pore dimensions. This foam-bubble microstructure determines the flow behavior of foam in porous media and, in turn, the flow of gas and liquid. Modeling of foam displacement has been frustrated because empirical extensions of the conventional continuum and Newtonian description of fluids in porous media do not reflect the coupling of foam-bubble microstructure and foam rheology. We report a mechanistic model for foam displacement in porous media that incorporates pore-level mechanisms of foam generation, coalescence, and transport in the transient flow of aqueous foams. A mean-size foam-bubble conservation equation, along with the traditional reservoir/groundwater simulation equations, provides the foundation for our mechanistic foam-displacement simulations. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary, as the role of foam texture must be incorporated into any model which seeks to predict foam flow accurately. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence, and incorporates trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. All model parameters have clear physical meaning and, consequently, are independent of flow conditions. Thus, for the first time, scale up of foam-flow behavior from laboratory to field dimensions appears possible. The simulation model is verified by comparison with experiment. In situ, transient, and steady aqueous-phase liquid contents are garnered in a 1.3 μm 2 Boise sandstone using scanning gamma-ray densitometry. Backpressures exceed 5 MPa, and foam quality ranges from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/d. Sequential pressure taps measure flow resistance. Excellent agreement is found between experiment and theory. Further, we find that the bubble population balance is the only current means of describing all flow modes of foam self-consistently.
doi_str_mv 10.1016/0009-2509(95)00199-F
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746039975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>000925099500199F</els_id><sourcerecordid>27421571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-dd47f29621357d0779e1ca67a2d2916c78e67a3332f86583c0619e04fc0348703</originalsourceid><addsrcrecordid>eNp9kDtPHDEQgK0okbiQ_AMKF4hAscTP9bqJBChHIiGlIbVl7FnFaHd9eHwg_j2-HKKkGo3mm9dHyBFn55zx_jtjzHZCM3tq9Rlj3Npu_YGs-GBkpxTTH8nqDTkgnxHvW2oMZytyd0FnCP_8krCmQDd5s518TXmhd37ySwA65wgTHXOhtfgFEyyV-iVSrODjc4fVV2hlP9Nxyk80LfQyJwSKDcKaF_hCPo1-Qvj6Gg_J3_XP26tf3c2f699XFzdd0MrWLkZlRmF7waU2sZ1ngQffGy-isLwPZoCWSCnFOPR6kIH13AJTY2BSDYbJQ_JtP3dT8sMWsLo5YYCpvQF5i86onklrjW7kybukMEpwbXgD1R4MJSMWGN2mpNmXZ8eZ26l3O69u59VZ7f6rd-vWdvw632Pw09i8hYRvvcIqLZho2I89Bs3KY4LiMDS9AWIqEKqLOb2_5wWiuJap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27421571</pqid></control><display><type>article</type><title>A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone</title><source>Elsevier</source><creator>Kovscek, A.R. ; Patzek, T.W. ; Radke, C.J.</creator><creatorcontrib>Kovscek, A.R. ; Patzek, T.W. ; Radke, C.J.</creatorcontrib><description>Foam in porous media is discontinuous on a length scale that overlaps with pore dimensions. This foam-bubble microstructure determines the flow behavior of foam in porous media and, in turn, the flow of gas and liquid. Modeling of foam displacement has been frustrated because empirical extensions of the conventional continuum and Newtonian description of fluids in porous media do not reflect the coupling of foam-bubble microstructure and foam rheology. We report a mechanistic model for foam displacement in porous media that incorporates pore-level mechanisms of foam generation, coalescence, and transport in the transient flow of aqueous foams. A mean-size foam-bubble conservation equation, along with the traditional reservoir/groundwater simulation equations, provides the foundation for our mechanistic foam-displacement simulations. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary, as the role of foam texture must be incorporated into any model which seeks to predict foam flow accurately. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence, and incorporates trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. All model parameters have clear physical meaning and, consequently, are independent of flow conditions. Thus, for the first time, scale up of foam-flow behavior from laboratory to field dimensions appears possible. The simulation model is verified by comparison with experiment. In situ, transient, and steady aqueous-phase liquid contents are garnered in a 1.3 μm 2 Boise sandstone using scanning gamma-ray densitometry. Backpressures exceed 5 MPa, and foam quality ranges from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/d. Sequential pressure taps measure flow resistance. Excellent agreement is found between experiment and theory. Further, we find that the bubble population balance is the only current means of describing all flow modes of foam self-consistently.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/0009-2509(95)00199-F</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Computer simulation ; Exact sciences and technology ; Foams ; Hydrodynamics of contact apparatus ; Mathematical models ; Microstructure ; Rheology ; Sandstone ; Transport properties</subject><ispartof>Chemical engineering science, 1995, Vol.50 (23), p.3783-3799</ispartof><rights>1995</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-dd47f29621357d0779e1ca67a2d2916c78e67a3332f86583c0619e04fc0348703</citedby><cites>FETCH-LOGICAL-c549t-dd47f29621357d0779e1ca67a2d2916c78e67a3332f86583c0619e04fc0348703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2945202$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovscek, A.R.</creatorcontrib><creatorcontrib>Patzek, T.W.</creatorcontrib><creatorcontrib>Radke, C.J.</creatorcontrib><title>A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone</title><title>Chemical engineering science</title><description>Foam in porous media is discontinuous on a length scale that overlaps with pore dimensions. This foam-bubble microstructure determines the flow behavior of foam in porous media and, in turn, the flow of gas and liquid. Modeling of foam displacement has been frustrated because empirical extensions of the conventional continuum and Newtonian description of fluids in porous media do not reflect the coupling of foam-bubble microstructure and foam rheology. We report a mechanistic model for foam displacement in porous media that incorporates pore-level mechanisms of foam generation, coalescence, and transport in the transient flow of aqueous foams. A mean-size foam-bubble conservation equation, along with the traditional reservoir/groundwater simulation equations, provides the foundation for our mechanistic foam-displacement simulations. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary, as the role of foam texture must be incorporated into any model which seeks to predict foam flow accurately. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence, and incorporates trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. All model parameters have clear physical meaning and, consequently, are independent of flow conditions. Thus, for the first time, scale up of foam-flow behavior from laboratory to field dimensions appears possible. The simulation model is verified by comparison with experiment. In situ, transient, and steady aqueous-phase liquid contents are garnered in a 1.3 μm 2 Boise sandstone using scanning gamma-ray densitometry. Backpressures exceed 5 MPa, and foam quality ranges from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/d. Sequential pressure taps measure flow resistance. Excellent agreement is found between experiment and theory. Further, we find that the bubble population balance is the only current means of describing all flow modes of foam self-consistently.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Foams</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Rheology</subject><subject>Sandstone</subject><subject>Transport properties</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPHDEQgK0okbiQ_AMKF4hAscTP9bqJBChHIiGlIbVl7FnFaHd9eHwg_j2-HKKkGo3mm9dHyBFn55zx_jtjzHZCM3tq9Rlj3Npu_YGs-GBkpxTTH8nqDTkgnxHvW2oMZytyd0FnCP_8krCmQDd5s518TXmhd37ySwA65wgTHXOhtfgFEyyV-iVSrODjc4fVV2hlP9Nxyk80LfQyJwSKDcKaF_hCPo1-Qvj6Gg_J3_XP26tf3c2f699XFzdd0MrWLkZlRmF7waU2sZ1ngQffGy-isLwPZoCWSCnFOPR6kIH13AJTY2BSDYbJQ_JtP3dT8sMWsLo5YYCpvQF5i86onklrjW7kybukMEpwbXgD1R4MJSMWGN2mpNmXZ8eZ26l3O69u59VZ7f6rd-vWdvw632Pw09i8hYRvvcIqLZho2I89Bs3KY4LiMDS9AWIqEKqLOb2_5wWiuJap</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Kovscek, A.R.</creator><creator>Patzek, T.W.</creator><creator>Radke, C.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1995</creationdate><title>A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone</title><author>Kovscek, A.R. ; Patzek, T.W. ; Radke, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-dd47f29621357d0779e1ca67a2d2916c78e67a3332f86583c0619e04fc0348703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Foams</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Rheology</topic><topic>Sandstone</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovscek, A.R.</creatorcontrib><creatorcontrib>Patzek, T.W.</creatorcontrib><creatorcontrib>Radke, C.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovscek, A.R.</au><au>Patzek, T.W.</au><au>Radke, C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone</atitle><jtitle>Chemical engineering science</jtitle><date>1995</date><risdate>1995</risdate><volume>50</volume><issue>23</issue><spage>3783</spage><epage>3799</epage><pages>3783-3799</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Foam in porous media is discontinuous on a length scale that overlaps with pore dimensions. This foam-bubble microstructure determines the flow behavior of foam in porous media and, in turn, the flow of gas and liquid. Modeling of foam displacement has been frustrated because empirical extensions of the conventional continuum and Newtonian description of fluids in porous media do not reflect the coupling of foam-bubble microstructure and foam rheology. We report a mechanistic model for foam displacement in porous media that incorporates pore-level mechanisms of foam generation, coalescence, and transport in the transient flow of aqueous foams. A mean-size foam-bubble conservation equation, along with the traditional reservoir/groundwater simulation equations, provides the foundation for our mechanistic foam-displacement simulations. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary, as the role of foam texture must be incorporated into any model which seeks to predict foam flow accurately. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence, and incorporates trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. All model parameters have clear physical meaning and, consequently, are independent of flow conditions. Thus, for the first time, scale up of foam-flow behavior from laboratory to field dimensions appears possible. The simulation model is verified by comparison with experiment. In situ, transient, and steady aqueous-phase liquid contents are garnered in a 1.3 μm 2 Boise sandstone using scanning gamma-ray densitometry. Backpressures exceed 5 MPa, and foam quality ranges from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/d. Sequential pressure taps measure flow resistance. Excellent agreement is found between experiment and theory. Further, we find that the bubble population balance is the only current means of describing all flow modes of foam self-consistently.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0009-2509(95)00199-F</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 1995, Vol.50 (23), p.3783-3799
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_746039975
source Elsevier
subjects Applied sciences
Chemical engineering
Computer simulation
Exact sciences and technology
Foams
Hydrodynamics of contact apparatus
Mathematical models
Microstructure
Rheology
Sandstone
Transport properties
title A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanistic%20population%20balance%20model%20for%20transient%20and%20steady-state%20foam%20flow%20in%20Boise%20sandstone&rft.jtitle=Chemical%20engineering%20science&rft.au=Kovscek,%20A.R.&rft.date=1995&rft.volume=50&rft.issue=23&rft.spage=3783&rft.epage=3799&rft.pages=3783-3799&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/0009-2509(95)00199-F&rft_dat=%3Cproquest_cross%3E27421571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-dd47f29621357d0779e1ca67a2d2916c78e67a3332f86583c0619e04fc0348703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27421571&rft_id=info:pmid/&rfr_iscdi=true