Loading…

Computer-Aided Design With Spatial Rational B-Spline Motions

Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical design (1990) 1996-06, Vol.118 (2), p.193-201
Main Authors: Ju¨ttler, B, Wagner, M. G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3
cites cdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3
container_end_page 201
container_issue 2
container_start_page 193
container_title Journal of mechanical design (1990)
container_volume 118
creator Ju¨ttler, B
Wagner, M. G
description Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.
doi_str_mv 10.1115/1.2826869
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746040729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746040729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsL125mIYiLqbl5TBJwU-sTKoJVXIaYSXTKvExmFv57U1pcncPhu4fLQegU8AwA-BXMiCSFLNQemgAnMlcYw37ymOMcM0EO0VGM6xSCZHyCrhdd04-DC_m8Kl2Z3bpYfbXZRzV8Z6veDJWps9ckXZvMTb7q66p12XO3SeIxOvCmju5kp1P0fn_3tnjMly8PT4v5MjcUyyH3zJWWWoUNAc-dErhgVFpaUmEK7rz4JFRxI41MLwnOVOGxFLI0RFkP4OkUXWx7-9D9jC4OuqmidXVtWteNUQtWYIYFUYm83JI2dDEG53UfqsaEXw1YbwbSoHcDJfZ812qiNbUPprVV_D-gQIBRkrCzLWZi4_S6G0OaImoGolBA_wBdoWts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746040729</pqid></control><display><type>article</type><title>Computer-Aided Design With Spatial Rational B-Spline Motions</title><source>ASME Transactions Journals (Archives)</source><creator>Ju¨ttler, B ; Wagner, M. G</creator><creatorcontrib>Ju¨ttler, B ; Wagner, M. G</creatorcontrib><description>Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.</description><identifier>ISSN: 1050-0472</identifier><identifier>EISSN: 1528-9001</identifier><identifier>DOI: 10.1115/1.2826869</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Algorithms ; Animation ; Applied sciences ; Artificial intelligence ; Computational geometry ; Computer aided design ; Computer science; control theory; systems ; Constraint theory ; Exact sciences and technology ; Interpolation ; Kinematics ; Mathematical transformations ; Matrix algebra ; Optimization ; Pattern recognition. Digital image processing. Computational geometry ; Robotics ; Software ; Tensors ; Vectors</subject><ispartof>Journal of mechanical design (1990), 1996-06, Vol.118 (2), p.193-201</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</citedby><cites>FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38519</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3121432$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju¨ttler, B</creatorcontrib><creatorcontrib>Wagner, M. G</creatorcontrib><title>Computer-Aided Design With Spatial Rational B-Spline Motions</title><title>Journal of mechanical design (1990)</title><addtitle>J. Mech. Des</addtitle><description>Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.</description><subject>Algorithms</subject><subject>Animation</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational geometry</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Constraint theory</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Kinematics</subject><subject>Mathematical transformations</subject><subject>Matrix algebra</subject><subject>Optimization</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robotics</subject><subject>Software</subject><subject>Tensors</subject><subject>Vectors</subject><issn>1050-0472</issn><issn>1528-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKsL125mIYiLqbl5TBJwU-sTKoJVXIaYSXTKvExmFv57U1pcncPhu4fLQegU8AwA-BXMiCSFLNQemgAnMlcYw37ymOMcM0EO0VGM6xSCZHyCrhdd04-DC_m8Kl2Z3bpYfbXZRzV8Z6veDJWps9ckXZvMTb7q66p12XO3SeIxOvCmju5kp1P0fn_3tnjMly8PT4v5MjcUyyH3zJWWWoUNAc-dErhgVFpaUmEK7rz4JFRxI41MLwnOVOGxFLI0RFkP4OkUXWx7-9D9jC4OuqmidXVtWteNUQtWYIYFUYm83JI2dDEG53UfqsaEXw1YbwbSoHcDJfZ812qiNbUPprVV_D-gQIBRkrCzLWZi4_S6G0OaImoGolBA_wBdoWts</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Ju¨ttler, B</creator><creator>Wagner, M. G</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19960601</creationdate><title>Computer-Aided Design With Spatial Rational B-Spline Motions</title><author>Ju¨ttler, B ; Wagner, M. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Animation</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational geometry</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Constraint theory</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Kinematics</topic><topic>Mathematical transformations</topic><topic>Matrix algebra</topic><topic>Optimization</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robotics</topic><topic>Software</topic><topic>Tensors</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju¨ttler, B</creatorcontrib><creatorcontrib>Wagner, M. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of mechanical design (1990)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju¨ttler, B</au><au>Wagner, M. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-Aided Design With Spatial Rational B-Spline Motions</atitle><jtitle>Journal of mechanical design (1990)</jtitle><stitle>J. Mech. Des</stitle><date>1996-06-01</date><risdate>1996</risdate><volume>118</volume><issue>2</issue><spage>193</spage><epage>201</epage><pages>193-201</pages><issn>1050-0472</issn><eissn>1528-9001</eissn><abstract>Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2826869</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-0472
ispartof Journal of mechanical design (1990), 1996-06, Vol.118 (2), p.193-201
issn 1050-0472
1528-9001
language eng
recordid cdi_proquest_miscellaneous_746040729
source ASME Transactions Journals (Archives)
subjects Algorithms
Animation
Applied sciences
Artificial intelligence
Computational geometry
Computer aided design
Computer science
control theory
systems
Constraint theory
Exact sciences and technology
Interpolation
Kinematics
Mathematical transformations
Matrix algebra
Optimization
Pattern recognition. Digital image processing. Computational geometry
Robotics
Software
Tensors
Vectors
title Computer-Aided Design With Spatial Rational B-Spline Motions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-Aided%20Design%20With%20Spatial%20Rational%20B-Spline%20Motions&rft.jtitle=Journal%20of%20mechanical%20design%20(1990)&rft.au=Ju%C2%A8ttler,%20B&rft.date=1996-06-01&rft.volume=118&rft.issue=2&rft.spage=193&rft.epage=201&rft.pages=193-201&rft.issn=1050-0472&rft.eissn=1528-9001&rft_id=info:doi/10.1115/1.2826869&rft_dat=%3Cproquest_cross%3E746040729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746040729&rft_id=info:pmid/&rfr_iscdi=true