Loading…
Computer-Aided Design With Spatial Rational B-Spline Motions
Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provi...
Saved in:
Published in: | Journal of mechanical design (1990) 1996-06, Vol.118 (2), p.193-201 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3 |
container_end_page | 201 |
container_issue | 2 |
container_start_page | 193 |
container_title | Journal of mechanical design (1990) |
container_volume | 118 |
creator | Ju¨ttler, B Wagner, M. G |
description | Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics. |
doi_str_mv | 10.1115/1.2826869 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746040729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746040729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsL125mIYiLqbl5TBJwU-sTKoJVXIaYSXTKvExmFv57U1pcncPhu4fLQegU8AwA-BXMiCSFLNQemgAnMlcYw37ymOMcM0EO0VGM6xSCZHyCrhdd04-DC_m8Kl2Z3bpYfbXZRzV8Z6veDJWps9ckXZvMTb7q66p12XO3SeIxOvCmju5kp1P0fn_3tnjMly8PT4v5MjcUyyH3zJWWWoUNAc-dErhgVFpaUmEK7rz4JFRxI41MLwnOVOGxFLI0RFkP4OkUXWx7-9D9jC4OuqmidXVtWteNUQtWYIYFUYm83JI2dDEG53UfqsaEXw1YbwbSoHcDJfZ812qiNbUPprVV_D-gQIBRkrCzLWZi4_S6G0OaImoGolBA_wBdoWts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746040729</pqid></control><display><type>article</type><title>Computer-Aided Design With Spatial Rational B-Spline Motions</title><source>ASME Transactions Journals (Archives)</source><creator>Ju¨ttler, B ; Wagner, M. G</creator><creatorcontrib>Ju¨ttler, B ; Wagner, M. G</creatorcontrib><description>Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.</description><identifier>ISSN: 1050-0472</identifier><identifier>EISSN: 1528-9001</identifier><identifier>DOI: 10.1115/1.2826869</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Algorithms ; Animation ; Applied sciences ; Artificial intelligence ; Computational geometry ; Computer aided design ; Computer science; control theory; systems ; Constraint theory ; Exact sciences and technology ; Interpolation ; Kinematics ; Mathematical transformations ; Matrix algebra ; Optimization ; Pattern recognition. Digital image processing. Computational geometry ; Robotics ; Software ; Tensors ; Vectors</subject><ispartof>Journal of mechanical design (1990), 1996-06, Vol.118 (2), p.193-201</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</citedby><cites>FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38519</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3121432$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju¨ttler, B</creatorcontrib><creatorcontrib>Wagner, M. G</creatorcontrib><title>Computer-Aided Design With Spatial Rational B-Spline Motions</title><title>Journal of mechanical design (1990)</title><addtitle>J. Mech. Des</addtitle><description>Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.</description><subject>Algorithms</subject><subject>Animation</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational geometry</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Constraint theory</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Kinematics</subject><subject>Mathematical transformations</subject><subject>Matrix algebra</subject><subject>Optimization</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robotics</subject><subject>Software</subject><subject>Tensors</subject><subject>Vectors</subject><issn>1050-0472</issn><issn>1528-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKsL125mIYiLqbl5TBJwU-sTKoJVXIaYSXTKvExmFv57U1pcncPhu4fLQegU8AwA-BXMiCSFLNQemgAnMlcYw37ymOMcM0EO0VGM6xSCZHyCrhdd04-DC_m8Kl2Z3bpYfbXZRzV8Z6veDJWps9ckXZvMTb7q66p12XO3SeIxOvCmju5kp1P0fn_3tnjMly8PT4v5MjcUyyH3zJWWWoUNAc-dErhgVFpaUmEK7rz4JFRxI41MLwnOVOGxFLI0RFkP4OkUXWx7-9D9jC4OuqmidXVtWteNUQtWYIYFUYm83JI2dDEG53UfqsaEXw1YbwbSoHcDJfZ812qiNbUPprVV_D-gQIBRkrCzLWZi4_S6G0OaImoGolBA_wBdoWts</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Ju¨ttler, B</creator><creator>Wagner, M. G</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19960601</creationdate><title>Computer-Aided Design With Spatial Rational B-Spline Motions</title><author>Ju¨ttler, B ; Wagner, M. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Animation</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational geometry</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Constraint theory</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Kinematics</topic><topic>Mathematical transformations</topic><topic>Matrix algebra</topic><topic>Optimization</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robotics</topic><topic>Software</topic><topic>Tensors</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju¨ttler, B</creatorcontrib><creatorcontrib>Wagner, M. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of mechanical design (1990)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju¨ttler, B</au><au>Wagner, M. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-Aided Design With Spatial Rational B-Spline Motions</atitle><jtitle>Journal of mechanical design (1990)</jtitle><stitle>J. Mech. Des</stitle><date>1996-06-01</date><risdate>1996</risdate><volume>118</volume><issue>2</issue><spage>193</spage><epage>201</epage><pages>193-201</pages><issn>1050-0472</issn><eissn>1528-9001</eissn><abstract>Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2826869</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-0472 |
ispartof | Journal of mechanical design (1990), 1996-06, Vol.118 (2), p.193-201 |
issn | 1050-0472 1528-9001 |
language | eng |
recordid | cdi_proquest_miscellaneous_746040729 |
source | ASME Transactions Journals (Archives) |
subjects | Algorithms Animation Applied sciences Artificial intelligence Computational geometry Computer aided design Computer science control theory systems Constraint theory Exact sciences and technology Interpolation Kinematics Mathematical transformations Matrix algebra Optimization Pattern recognition. Digital image processing. Computational geometry Robotics Software Tensors Vectors |
title | Computer-Aided Design With Spatial Rational B-Spline Motions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-Aided%20Design%20With%20Spatial%20Rational%20B-Spline%20Motions&rft.jtitle=Journal%20of%20mechanical%20design%20(1990)&rft.au=Ju%C2%A8ttler,%20B&rft.date=1996-06-01&rft.volume=118&rft.issue=2&rft.spage=193&rft.epage=201&rft.pages=193-201&rft.issn=1050-0472&rft.eissn=1528-9001&rft_id=info:doi/10.1115/1.2826869&rft_dat=%3Cproquest_cross%3E746040729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a308t-f4edc3c90a21f5e9706438c3d37a65ef7b2395a8a884575496f0878da29cf11f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746040729&rft_id=info:pmid/&rfr_iscdi=true |