Loading…

Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF

In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–paramet...

Full description

Saved in:
Bibliographic Details
Published in:Advances in water resources 2010-04, Vol.33 (4), p.468-484
Main Authors: Monsivais-Huertero, Alejandro, Graham, Wendy D., Judge, Jasmeet, Agrawal, Divya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83
cites cdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83
container_end_page 484
container_issue 4
container_start_page 468
container_title Advances in water resources
container_volume 33
creator Monsivais-Huertero, Alejandro
Graham, Wendy D.
Judge, Jasmeet
Agrawal, Divya
description In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.
doi_str_mv 10.1016/j.advwatres.2010.01.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746074102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170810000230</els_id><sourcerecordid>746074102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</originalsourceid><addsrcrecordid>eNqFkcGOFCEQhjtGE8fVZ1guxlOPBU1D93GzmVXjJh50z4SFYsKkG0agx6wnz159Q59EJr3Zq0kFEvj_n6qPprmksKVAxfvDVtvTD10S5i2Degq0Fn3WbOggWTuKXj5vNtDB2FIJw8vmVc4HABi4ZJvm9845NIVER7Kfl6nogHHJJBdd8O-vP0ed9IwFE8Fc_KyLj4HoYImLyfiwJ0swmIr2oXjMpF6mGEv7MwYkOfqJzNHnsiQ8G4h9CHr2hpxwj2XNWvI5ZRc-37xuXjg9ZXzzuF80dze7b9cf29svHz5dX922hgMtbScMc_edlZJxZ2nP9SjQohCjYxKdpEJwJnhf1144LsVoeynR3o8DCIlDd9G8W3OPKX5f6lhq9tngNK2jK8kFSE6BVaVclSbFnBM6dUyVQXpQFNQZvjqoJ_jqDF8BrUWr8-3jGzobPbmkg_H5yc5YL0U_QNVdrjqno9L7VDV3X2tQB3TgAN25h6tVgRXJyWNS2Xis0K1P9eOUjf6_3fwD3U-sCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746074102</pqid></control><display><type>article</type><title>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</title><source>Elsevier</source><creator>Monsivais-Huertero, Alejandro ; Graham, Wendy D. ; Judge, Jasmeet ; Agrawal, Divya</creator><creatorcontrib>Monsivais-Huertero, Alejandro ; Graham, Wendy D. ; Judge, Jasmeet ; Agrawal, Divya</creatorcontrib><description>In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2010.01.011</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Assimilation ; corn ; Earth sciences ; Earth, ocean, space ; Ensemble Kalman Filter ; Errors ; Estimates ; Estimating ; Exact sciences and technology ; Hydrology. Hydrogeology ; mathematical models ; mathematics and statistics ; rhizosphere ; Root-zone soil moisture ; Soil moisture ; soil water ; soil water content ; SVAT-vegetation models ; Uncertainty ; Vegetation ; vegetation cover ; volumetric soil moisture ; Zea mays</subject><ispartof>Advances in water resources, 2010-04, Vol.33 (4), p.468-484</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</citedby><cites>FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22576580$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Monsivais-Huertero, Alejandro</creatorcontrib><creatorcontrib>Graham, Wendy D.</creatorcontrib><creatorcontrib>Judge, Jasmeet</creatorcontrib><creatorcontrib>Agrawal, Divya</creatorcontrib><title>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</title><title>Advances in water resources</title><description>In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.</description><subject>Algorithms</subject><subject>Assimilation</subject><subject>corn</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ensemble Kalman Filter</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>mathematics and statistics</subject><subject>rhizosphere</subject><subject>Root-zone soil moisture</subject><subject>Soil moisture</subject><subject>soil water</subject><subject>soil water content</subject><subject>SVAT-vegetation models</subject><subject>Uncertainty</subject><subject>Vegetation</subject><subject>vegetation cover</subject><subject>volumetric soil moisture</subject><subject>Zea mays</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcGOFCEQhjtGE8fVZ1guxlOPBU1D93GzmVXjJh50z4SFYsKkG0agx6wnz159Q59EJr3Zq0kFEvj_n6qPprmksKVAxfvDVtvTD10S5i2Degq0Fn3WbOggWTuKXj5vNtDB2FIJw8vmVc4HABi4ZJvm9845NIVER7Kfl6nogHHJJBdd8O-vP0ed9IwFE8Fc_KyLj4HoYImLyfiwJ0swmIr2oXjMpF6mGEv7MwYkOfqJzNHnsiQ8G4h9CHr2hpxwj2XNWvI5ZRc-37xuXjg9ZXzzuF80dze7b9cf29svHz5dX922hgMtbScMc_edlZJxZ2nP9SjQohCjYxKdpEJwJnhf1144LsVoeynR3o8DCIlDd9G8W3OPKX5f6lhq9tngNK2jK8kFSE6BVaVclSbFnBM6dUyVQXpQFNQZvjqoJ_jqDF8BrUWr8-3jGzobPbmkg_H5yc5YL0U_QNVdrjqno9L7VDV3X2tQB3TgAN25h6tVgRXJyWNS2Xis0K1P9eOUjf6_3fwD3U-sCw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Monsivais-Huertero, Alejandro</creator><creator>Graham, Wendy D.</creator><creator>Judge, Jasmeet</creator><creator>Agrawal, Divya</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100401</creationdate><title>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</title><author>Monsivais-Huertero, Alejandro ; Graham, Wendy D. ; Judge, Jasmeet ; Agrawal, Divya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Assimilation</topic><topic>corn</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ensemble Kalman Filter</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>mathematics and statistics</topic><topic>rhizosphere</topic><topic>Root-zone soil moisture</topic><topic>Soil moisture</topic><topic>soil water</topic><topic>soil water content</topic><topic>SVAT-vegetation models</topic><topic>Uncertainty</topic><topic>Vegetation</topic><topic>vegetation cover</topic><topic>volumetric soil moisture</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monsivais-Huertero, Alejandro</creatorcontrib><creatorcontrib>Graham, Wendy D.</creatorcontrib><creatorcontrib>Judge, Jasmeet</creatorcontrib><creatorcontrib>Agrawal, Divya</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsivais-Huertero, Alejandro</au><au>Graham, Wendy D.</au><au>Judge, Jasmeet</au><au>Agrawal, Divya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</atitle><jtitle>Advances in water resources</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>33</volume><issue>4</issue><spage>468</spage><epage>484</epage><pages>468-484</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2010.01.011</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2010-04, Vol.33 (4), p.468-484
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_746074102
source Elsevier
subjects Algorithms
Assimilation
corn
Earth sciences
Earth, ocean, space
Ensemble Kalman Filter
Errors
Estimates
Estimating
Exact sciences and technology
Hydrology. Hydrogeology
mathematical models
mathematics and statistics
rhizosphere
Root-zone soil moisture
Soil moisture
soil water
soil water content
SVAT-vegetation models
Uncertainty
Vegetation
vegetation cover
volumetric soil moisture
Zea mays
title Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20simultaneous%20state%E2%80%93parameter%20estimation%20and%20forcing%20uncertainties%20on%20root-zone%20soil%20moisture%20for%20dynamic%20vegetation%20using%20EnKF&rft.jtitle=Advances%20in%20water%20resources&rft.au=Monsivais-Huertero,%20Alejandro&rft.date=2010-04-01&rft.volume=33&rft.issue=4&rft.spage=468&rft.epage=484&rft.pages=468-484&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2010.01.011&rft_dat=%3Cproquest_cross%3E746074102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746074102&rft_id=info:pmid/&rfr_iscdi=true