Loading…
Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF
In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–paramet...
Saved in:
Published in: | Advances in water resources 2010-04, Vol.33 (4), p.468-484 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83 |
container_end_page | 484 |
container_issue | 4 |
container_start_page | 468 |
container_title | Advances in water resources |
container_volume | 33 |
creator | Monsivais-Huertero, Alejandro Graham, Wendy D. Judge, Jasmeet Agrawal, Divya |
description | In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics. |
doi_str_mv | 10.1016/j.advwatres.2010.01.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746074102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170810000230</els_id><sourcerecordid>746074102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</originalsourceid><addsrcrecordid>eNqFkcGOFCEQhjtGE8fVZ1guxlOPBU1D93GzmVXjJh50z4SFYsKkG0agx6wnz159Q59EJr3Zq0kFEvj_n6qPprmksKVAxfvDVtvTD10S5i2Degq0Fn3WbOggWTuKXj5vNtDB2FIJw8vmVc4HABi4ZJvm9845NIVER7Kfl6nogHHJJBdd8O-vP0ed9IwFE8Fc_KyLj4HoYImLyfiwJ0swmIr2oXjMpF6mGEv7MwYkOfqJzNHnsiQ8G4h9CHr2hpxwj2XNWvI5ZRc-37xuXjg9ZXzzuF80dze7b9cf29svHz5dX922hgMtbScMc_edlZJxZ2nP9SjQohCjYxKdpEJwJnhf1144LsVoeynR3o8DCIlDd9G8W3OPKX5f6lhq9tngNK2jK8kFSE6BVaVclSbFnBM6dUyVQXpQFNQZvjqoJ_jqDF8BrUWr8-3jGzobPbmkg_H5yc5YL0U_QNVdrjqno9L7VDV3X2tQB3TgAN25h6tVgRXJyWNS2Xis0K1P9eOUjf6_3fwD3U-sCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746074102</pqid></control><display><type>article</type><title>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</title><source>Elsevier</source><creator>Monsivais-Huertero, Alejandro ; Graham, Wendy D. ; Judge, Jasmeet ; Agrawal, Divya</creator><creatorcontrib>Monsivais-Huertero, Alejandro ; Graham, Wendy D. ; Judge, Jasmeet ; Agrawal, Divya</creatorcontrib><description>In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2010.01.011</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Assimilation ; corn ; Earth sciences ; Earth, ocean, space ; Ensemble Kalman Filter ; Errors ; Estimates ; Estimating ; Exact sciences and technology ; Hydrology. Hydrogeology ; mathematical models ; mathematics and statistics ; rhizosphere ; Root-zone soil moisture ; Soil moisture ; soil water ; soil water content ; SVAT-vegetation models ; Uncertainty ; Vegetation ; vegetation cover ; volumetric soil moisture ; Zea mays</subject><ispartof>Advances in water resources, 2010-04, Vol.33 (4), p.468-484</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</citedby><cites>FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22576580$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Monsivais-Huertero, Alejandro</creatorcontrib><creatorcontrib>Graham, Wendy D.</creatorcontrib><creatorcontrib>Judge, Jasmeet</creatorcontrib><creatorcontrib>Agrawal, Divya</creatorcontrib><title>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</title><title>Advances in water resources</title><description>In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.</description><subject>Algorithms</subject><subject>Assimilation</subject><subject>corn</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ensemble Kalman Filter</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>mathematics and statistics</subject><subject>rhizosphere</subject><subject>Root-zone soil moisture</subject><subject>Soil moisture</subject><subject>soil water</subject><subject>soil water content</subject><subject>SVAT-vegetation models</subject><subject>Uncertainty</subject><subject>Vegetation</subject><subject>vegetation cover</subject><subject>volumetric soil moisture</subject><subject>Zea mays</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcGOFCEQhjtGE8fVZ1guxlOPBU1D93GzmVXjJh50z4SFYsKkG0agx6wnz159Q59EJr3Zq0kFEvj_n6qPprmksKVAxfvDVtvTD10S5i2Degq0Fn3WbOggWTuKXj5vNtDB2FIJw8vmVc4HABi4ZJvm9845NIVER7Kfl6nogHHJJBdd8O-vP0ed9IwFE8Fc_KyLj4HoYImLyfiwJ0swmIr2oXjMpF6mGEv7MwYkOfqJzNHnsiQ8G4h9CHr2hpxwj2XNWvI5ZRc-37xuXjg9ZXzzuF80dze7b9cf29svHz5dX922hgMtbScMc_edlZJxZ2nP9SjQohCjYxKdpEJwJnhf1144LsVoeynR3o8DCIlDd9G8W3OPKX5f6lhq9tngNK2jK8kFSE6BVaVclSbFnBM6dUyVQXpQFNQZvjqoJ_jqDF8BrUWr8-3jGzobPbmkg_H5yc5YL0U_QNVdrjqno9L7VDV3X2tQB3TgAN25h6tVgRXJyWNS2Xis0K1P9eOUjf6_3fwD3U-sCw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Monsivais-Huertero, Alejandro</creator><creator>Graham, Wendy D.</creator><creator>Judge, Jasmeet</creator><creator>Agrawal, Divya</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100401</creationdate><title>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</title><author>Monsivais-Huertero, Alejandro ; Graham, Wendy D. ; Judge, Jasmeet ; Agrawal, Divya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Assimilation</topic><topic>corn</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ensemble Kalman Filter</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>mathematics and statistics</topic><topic>rhizosphere</topic><topic>Root-zone soil moisture</topic><topic>Soil moisture</topic><topic>soil water</topic><topic>soil water content</topic><topic>SVAT-vegetation models</topic><topic>Uncertainty</topic><topic>Vegetation</topic><topic>vegetation cover</topic><topic>volumetric soil moisture</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monsivais-Huertero, Alejandro</creatorcontrib><creatorcontrib>Graham, Wendy D.</creatorcontrib><creatorcontrib>Judge, Jasmeet</creatorcontrib><creatorcontrib>Agrawal, Divya</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsivais-Huertero, Alejandro</au><au>Graham, Wendy D.</au><au>Judge, Jasmeet</au><au>Agrawal, Divya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF</atitle><jtitle>Advances in water resources</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>33</volume><issue>4</issue><spage>468</spage><epage>484</epage><pages>468-484</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state–parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2010.01.011</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1708 |
ispartof | Advances in water resources, 2010-04, Vol.33 (4), p.468-484 |
issn | 0309-1708 1872-9657 |
language | eng |
recordid | cdi_proquest_miscellaneous_746074102 |
source | Elsevier |
subjects | Algorithms Assimilation corn Earth sciences Earth, ocean, space Ensemble Kalman Filter Errors Estimates Estimating Exact sciences and technology Hydrology. Hydrogeology mathematical models mathematics and statistics rhizosphere Root-zone soil moisture Soil moisture soil water soil water content SVAT-vegetation models Uncertainty Vegetation vegetation cover volumetric soil moisture Zea mays |
title | Effect of simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20simultaneous%20state%E2%80%93parameter%20estimation%20and%20forcing%20uncertainties%20on%20root-zone%20soil%20moisture%20for%20dynamic%20vegetation%20using%20EnKF&rft.jtitle=Advances%20in%20water%20resources&rft.au=Monsivais-Huertero,%20Alejandro&rft.date=2010-04-01&rft.volume=33&rft.issue=4&rft.spage=468&rft.epage=484&rft.pages=468-484&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2010.01.011&rft_dat=%3Cproquest_cross%3E746074102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-36c2fb3d7724fd154a96ede669f27ef71664264564256f4769d577edb98067e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746074102&rft_id=info:pmid/&rfr_iscdi=true |