Loading…

A whole cell electrochemical biosensor for water genotoxicity bio-detection

This work presents a novel micro-fluidic whole cell biosensor for water toxicity analysis. The biosensor presented here is based on bacterial cells that are genetically “tailored” to generate a sequence of biochemical reactions that eventually generate an electrical signal in the presence of genotox...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2009-10, Vol.54 (25), p.6113-6118
Main Authors: Ben-Yoav, Hadar, Biran, Alva, Pedahzur, Rami, Belkin, Shimshon, Buchinger, Sebastian, Reifferscheid, Georg, Shacham-Diamand, Yosi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents a novel micro-fluidic whole cell biosensor for water toxicity analysis. The biosensor presented here is based on bacterial cells that are genetically “tailored” to generate a sequence of biochemical reactions that eventually generate an electrical signal in the presence of genotoxicants. The bacterial assay was affected by toxicant contaminated water for an induction time that ranged between 30 min and 120 min. Enzymatic substrate (pAPP) was added to the assay generating the electrochemical active material (pAP) only when toxicants are sensed by the bacteria. The bacteria were integrated onto a micro-chip that was manufactured by MEMS technology and comprises various micro-chambers with volume ranging between 2.5 nl and 157 nl with electrode radius between 37.5 μm and 300 μm. We describe the biochip operation, its electrochemical response to calibration solutions as well as to the whole cell assays. The potential use of the whole cell biochip for toxicity detection of two different genotoxicants, nalidixic acid (NA) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), is demonstrated. We demonstrate minimal toxicant detection of 10 μg/ml for NA using 30 min for induction and 0.31 μM for IQ using 120 min for induction, both 3 min after the addition of the substrate material.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2009.01.061