Loading…

Limited contribution of stem-loop potential to symmetry of single-stranded genomic DNA

Motivation: The phenomenon of strand symmetry, which may provide clues to genome evolution, exists in all prokaryotic and eukaryotic genomes studied. Several possible mechanisms for its origins have been proposed, including: no strand biases for mutation and selection, strand inversion and selection...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2010-02, Vol.26 (4), p.478-485
Main Authors: Zhang, Shang-Hong, Huang, Ya-Zhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivation: The phenomenon of strand symmetry, which may provide clues to genome evolution, exists in all prokaryotic and eukaryotic genomes studied. Several possible mechanisms for its origins have been proposed, including: no strand biases for mutation and selection, strand inversion and selection of stem-loop structures. However, the relative contributions of these mechanisms to strand symmetry are not clear. In this article, we studied specifically the role of stem-loop potential of single-stranded DNA in strand symmetry. Results: We analyzed the complete genomes of 90 prokaryotes. We found that most oligonucleotides (pentanucleotides and higher) do not have a reverse complement in close proximity in the genomic sequences. Combined with further analysis, we conclude that the contribution of the widespread stem-loop potential of single-stranded genomic DNA to the formation and maintenance of strand symmetry would be very limited, at least for higher-order oligonucleotides. Therefore, other possible causes for strand symmetry must be taken into account to a deeper degree. Contacts: lsszsh@mail.sysu.edu.cn; molevol@mail.sysu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btp703