Loading…

Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods

Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic vari...

Full description

Saved in:
Bibliographic Details
Published in:Journal of manufacturing science and engineering 1997-08, Vol.119 (3), p.368-374
Main Authors: Liu, S. Charles, Hu, S. Jack
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193
cites cdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193
container_end_page 374
container_issue 3
container_start_page 368
container_title Journal of manufacturing science and engineering
container_volume 119
creator Liu, S. Charles
Hu, S. Jack
description Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.
doi_str_mv 10.1115/1.2831115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746089330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746089330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqUwMLNkQCCGFH82zliVFpCKGEphtM7phbpykmKnA_8el1aMLHfv8Nx70pMkl5QMKKXyng6Y4rt0lPSoZCpTBZfHMROVZ5TL_DQ5C2FNCKVK8F7y8Q7eQmfbJp3beuv2sWp9-oBx1mAcpvMVYpe-YAcuHYWAtXEWQ7oItvlMp7axHaYThzU2v9SqXYbz5KQCF_DisPvJYjp5Gz9ls9fH5_FoloEgssuoAZSFURUHpWBpkJuqKPiSEM4lGGZKCUghBwAzFMZIwQslTTUUlVCSFryf3O57N7792mLodG1Dic5Bg-026FwMSVTASSRv_iVZLpgUbBjBuz1Y-jYEj5XeeFuD_9aU6J1aTfVBcmSvD6UQSnCVh6a04e-A5fF3LiJ2tccg1KjX7dY3UYoWjCjG-A-GfIRq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27425426</pqid></control><display><type>article</type><title>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</title><source>ASME Transactions Journals (Archives)</source><creator>Liu, S. Charles ; Hu, S. Jack</creator><creatorcontrib>Liu, S. Charles ; Hu, S. Jack</creatorcontrib><description>Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.</description><identifier>ISSN: 1087-1357</identifier><identifier>EISSN: 1528-8935</identifier><identifier>DOI: 10.1115/1.2831115</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Computer simulation ; Deformation ; Exact sciences and technology ; Finite element method ; Friction-type joining (riveting, screwing, clamping, bending) ; Joining, thermal cutting: metallurgical aspects ; Mechanical engineering. Machine design ; Metals. Metallurgy ; Sheet metal ; Stress analysis ; Variational techniques</subject><ispartof>Journal of manufacturing science and engineering, 1997-08, Vol.119 (3), p.368-374</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</citedby><cites>FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38519</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2789374$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, S. Charles</creatorcontrib><creatorcontrib>Hu, S. Jack</creatorcontrib><title>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</title><title>Journal of manufacturing science and engineering</title><addtitle>J. Manuf. Sci. Eng</addtitle><description>Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Friction-type joining (riveting, screwing, clamping, bending)</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Mechanical engineering. Machine design</subject><subject>Metals. Metallurgy</subject><subject>Sheet metal</subject><subject>Stress analysis</subject><subject>Variational techniques</subject><issn>1087-1357</issn><issn>1528-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqUwMLNkQCCGFH82zliVFpCKGEphtM7phbpykmKnA_8el1aMLHfv8Nx70pMkl5QMKKXyng6Y4rt0lPSoZCpTBZfHMROVZ5TL_DQ5C2FNCKVK8F7y8Q7eQmfbJp3beuv2sWp9-oBx1mAcpvMVYpe-YAcuHYWAtXEWQ7oItvlMp7axHaYThzU2v9SqXYbz5KQCF_DisPvJYjp5Gz9ls9fH5_FoloEgssuoAZSFURUHpWBpkJuqKPiSEM4lGGZKCUghBwAzFMZIwQslTTUUlVCSFryf3O57N7792mLodG1Dic5Bg-026FwMSVTASSRv_iVZLpgUbBjBuz1Y-jYEj5XeeFuD_9aU6J1aTfVBcmSvD6UQSnCVh6a04e-A5fF3LiJ2tccg1KjX7dY3UYoWjCjG-A-GfIRq</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Liu, S. Charles</creator><creator>Hu, S. Jack</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>19970801</creationdate><title>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</title><author>Liu, S. Charles ; Hu, S. Jack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Friction-type joining (riveting, screwing, clamping, bending)</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Mechanical engineering. Machine design</topic><topic>Metals. Metallurgy</topic><topic>Sheet metal</topic><topic>Stress analysis</topic><topic>Variational techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, S. Charles</creatorcontrib><creatorcontrib>Hu, S. Jack</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of manufacturing science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, S. Charles</au><au>Hu, S. Jack</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</atitle><jtitle>Journal of manufacturing science and engineering</jtitle><stitle>J. Manuf. Sci. Eng</stitle><date>1997-08-01</date><risdate>1997</risdate><volume>119</volume><issue>3</issue><spage>368</spage><epage>374</epage><pages>368-374</pages><issn>1087-1357</issn><eissn>1528-8935</eissn><abstract>Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2831115</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-1357
ispartof Journal of manufacturing science and engineering, 1997-08, Vol.119 (3), p.368-374
issn 1087-1357
1528-8935
language eng
recordid cdi_proquest_miscellaneous_746089330
source ASME Transactions Journals (Archives)
subjects Applied sciences
Computer simulation
Deformation
Exact sciences and technology
Finite element method
Friction-type joining (riveting, screwing, clamping, bending)
Joining, thermal cutting: metallurgical aspects
Mechanical engineering. Machine design
Metals. Metallurgy
Sheet metal
Stress analysis
Variational techniques
title Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20Simulation%20for%20Deformable%20Sheet%20Metal%20Assemblies%20Using%20Finite%20Element%20Methods&rft.jtitle=Journal%20of%20manufacturing%20science%20and%20engineering&rft.au=Liu,%20S.%20Charles&rft.date=1997-08-01&rft.volume=119&rft.issue=3&rft.spage=368&rft.epage=374&rft.pages=368-374&rft.issn=1087-1357&rft.eissn=1528-8935&rft_id=info:doi/10.1115/1.2831115&rft_dat=%3Cproquest_cross%3E746089330%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27425426&rft_id=info:pmid/&rfr_iscdi=true