Loading…
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic vari...
Saved in:
Published in: | Journal of manufacturing science and engineering 1997-08, Vol.119 (3), p.368-374 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193 |
---|---|
cites | cdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193 |
container_end_page | 374 |
container_issue | 3 |
container_start_page | 368 |
container_title | Journal of manufacturing science and engineering |
container_volume | 119 |
creator | Liu, S. Charles Hu, S. Jack |
description | Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes. |
doi_str_mv | 10.1115/1.2831115 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746089330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746089330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqUwMLNkQCCGFH82zliVFpCKGEphtM7phbpykmKnA_8el1aMLHfv8Nx70pMkl5QMKKXyng6Y4rt0lPSoZCpTBZfHMROVZ5TL_DQ5C2FNCKVK8F7y8Q7eQmfbJp3beuv2sWp9-oBx1mAcpvMVYpe-YAcuHYWAtXEWQ7oItvlMp7axHaYThzU2v9SqXYbz5KQCF_DisPvJYjp5Gz9ls9fH5_FoloEgssuoAZSFURUHpWBpkJuqKPiSEM4lGGZKCUghBwAzFMZIwQslTTUUlVCSFryf3O57N7792mLodG1Dic5Bg-026FwMSVTASSRv_iVZLpgUbBjBuz1Y-jYEj5XeeFuD_9aU6J1aTfVBcmSvD6UQSnCVh6a04e-A5fF3LiJ2tccg1KjX7dY3UYoWjCjG-A-GfIRq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27425426</pqid></control><display><type>article</type><title>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</title><source>ASME Transactions Journals (Archives)</source><creator>Liu, S. Charles ; Hu, S. Jack</creator><creatorcontrib>Liu, S. Charles ; Hu, S. Jack</creatorcontrib><description>Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.</description><identifier>ISSN: 1087-1357</identifier><identifier>EISSN: 1528-8935</identifier><identifier>DOI: 10.1115/1.2831115</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Computer simulation ; Deformation ; Exact sciences and technology ; Finite element method ; Friction-type joining (riveting, screwing, clamping, bending) ; Joining, thermal cutting: metallurgical aspects ; Mechanical engineering. Machine design ; Metals. Metallurgy ; Sheet metal ; Stress analysis ; Variational techniques</subject><ispartof>Journal of manufacturing science and engineering, 1997-08, Vol.119 (3), p.368-374</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</citedby><cites>FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38519</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2789374$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, S. Charles</creatorcontrib><creatorcontrib>Hu, S. Jack</creatorcontrib><title>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</title><title>Journal of manufacturing science and engineering</title><addtitle>J. Manuf. Sci. Eng</addtitle><description>Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Friction-type joining (riveting, screwing, clamping, bending)</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Mechanical engineering. Machine design</subject><subject>Metals. Metallurgy</subject><subject>Sheet metal</subject><subject>Stress analysis</subject><subject>Variational techniques</subject><issn>1087-1357</issn><issn>1528-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqUwMLNkQCCGFH82zliVFpCKGEphtM7phbpykmKnA_8el1aMLHfv8Nx70pMkl5QMKKXyng6Y4rt0lPSoZCpTBZfHMROVZ5TL_DQ5C2FNCKVK8F7y8Q7eQmfbJp3beuv2sWp9-oBx1mAcpvMVYpe-YAcuHYWAtXEWQ7oItvlMp7axHaYThzU2v9SqXYbz5KQCF_DisPvJYjp5Gz9ls9fH5_FoloEgssuoAZSFURUHpWBpkJuqKPiSEM4lGGZKCUghBwAzFMZIwQslTTUUlVCSFryf3O57N7792mLodG1Dic5Bg-026FwMSVTASSRv_iVZLpgUbBjBuz1Y-jYEj5XeeFuD_9aU6J1aTfVBcmSvD6UQSnCVh6a04e-A5fF3LiJ2tccg1KjX7dY3UYoWjCjG-A-GfIRq</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Liu, S. Charles</creator><creator>Hu, S. Jack</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>19970801</creationdate><title>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</title><author>Liu, S. Charles ; Hu, S. Jack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Friction-type joining (riveting, screwing, clamping, bending)</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Mechanical engineering. Machine design</topic><topic>Metals. Metallurgy</topic><topic>Sheet metal</topic><topic>Stress analysis</topic><topic>Variational techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, S. Charles</creatorcontrib><creatorcontrib>Hu, S. Jack</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of manufacturing science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, S. Charles</au><au>Hu, S. Jack</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods</atitle><jtitle>Journal of manufacturing science and engineering</jtitle><stitle>J. Manuf. Sci. Eng</stitle><date>1997-08-01</date><risdate>1997</risdate><volume>119</volume><issue>3</issue><spage>368</spage><epage>374</epage><pages>368-374</pages><issn>1087-1357</issn><eissn>1528-8935</eissn><abstract>Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2831115</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-1357 |
ispartof | Journal of manufacturing science and engineering, 1997-08, Vol.119 (3), p.368-374 |
issn | 1087-1357 1528-8935 |
language | eng |
recordid | cdi_proquest_miscellaneous_746089330 |
source | ASME Transactions Journals (Archives) |
subjects | Applied sciences Computer simulation Deformation Exact sciences and technology Finite element method Friction-type joining (riveting, screwing, clamping, bending) Joining, thermal cutting: metallurgical aspects Mechanical engineering. Machine design Metals. Metallurgy Sheet metal Stress analysis Variational techniques |
title | Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20Simulation%20for%20Deformable%20Sheet%20Metal%20Assemblies%20Using%20Finite%20Element%20Methods&rft.jtitle=Journal%20of%20manufacturing%20science%20and%20engineering&rft.au=Liu,%20S.%20Charles&rft.date=1997-08-01&rft.volume=119&rft.issue=3&rft.spage=368&rft.epage=374&rft.pages=368-374&rft.issn=1087-1357&rft.eissn=1528-8935&rft_id=info:doi/10.1115/1.2831115&rft_dat=%3Cproquest_cross%3E746089330%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-1bae59b8f3a88adbe3bf993d00335ab2bc5ae1a7aaab64bb543985bf64f485193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27425426&rft_id=info:pmid/&rfr_iscdi=true |