Loading…

Acetylcholine-dopamine balance hypothesis in the striatum: An update

The imbalance between cholinergic activity and dopaminergic activity in the striatum causes a variety of neurological disorders, such as Parkinson's disease. During sensorimotor learning, the arrival of a conditioned stimulus reporting a reward evokes a pause response in the firing of the tonic...

Full description

Saved in:
Bibliographic Details
Published in:Geriatrics & gerontology international 2010-07, Vol.10 (s1), p.S148-S157
Main Authors: Aosaki, Toshihiko, Miura, Masami, Suzuki, Takeo, Nishimura, Kinya, Masuda, Masao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6418-33a1933f7a29831f81c5e74e2fa10b9ad9877aba5358add6a6c7656203f362a83
cites cdi_FETCH-LOGICAL-c6418-33a1933f7a29831f81c5e74e2fa10b9ad9877aba5358add6a6c7656203f362a83
container_end_page S157
container_issue s1
container_start_page S148
container_title Geriatrics & gerontology international
container_volume 10
creator Aosaki, Toshihiko
Miura, Masami
Suzuki, Takeo
Nishimura, Kinya
Masuda, Masao
description The imbalance between cholinergic activity and dopaminergic activity in the striatum causes a variety of neurological disorders, such as Parkinson's disease. During sensorimotor learning, the arrival of a conditioned stimulus reporting a reward evokes a pause response in the firing of the tonically active cholinergic interneurons in targeted areas of the striatum, whereas the same stimulus triggers an increase in the firing frequency of the dopaminergic neurons in the substantia nigra pars compacta. The pause response of the cholinergic interneurons begins with an initial depolarizing phase followed by a pause in spike firing and ensuing rebound excitation. The timing of the pause phase coincides well with the surge in dopaminergic firing, indicating that a dramatic rise in dopamine (DA) release occurs while nicotinic receptors remain unbound by acetylcholine. The pause response begins with dopamine D5 receptor‐dependent synaptic plasticity in the cholinergic neurons and an increased GABAergic IPSP, which is followed by a long pause in firing through D2 and D5 receptor‐dependent modulation of ion channels. Inactivation of muscarinic receptors on the projection neurons eventually yields endocannabinoid‐mediated, dopamine‐dependent long‐term depression in the medium spiny projection neurons. Breakdown of acetylcholine‐dopamine balance hampers proper functioning of the cortico‐basal ganglia‐thalamocortical loop circuits. In Parkinson's disease, dopamine depletion blocks autoinhibition of acetylcholine release through muscarinic autoreceptors, leading to excessive acetylcholine release which eventually prunes spines of the indirect‐pathway projection neurons of the striatum and thus interrupts information transfer from motor command centers in the cerebral cortex. Geriatr Gerontol Int 2010; 10 (Suppl. 1): S148–S157.
doi_str_mv 10.1111/j.1447-0594.2010.00588.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746157977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746157977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6418-33a1933f7a29831f81c5e74e2fa10b9ad9877aba5358add6a6c7656203f362a83</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0E4lH4CyhiYUqx4_gRxFIVKCBUBkBILFe3iaOm5EWciPbf41DowAJefGR_5_hahxCP0SFz62wxZGGofCqicBhQd0qp0Hq43CL7m4vtLx36TGi5Rw6sXVDKVMTYLtkLHEA1p_vkchSbdpXH8yrPSuMnVY2FE94Mcyxj481XddXOjc2sl5WeU55tmwzbrjj3RqXX1Qm25pDspJhbc_S9D8jz9dXT-Ma_f5jcjkf3fixDpn3OkUWcpwqDSHOWahYLo0ITpMjoLMIk0krhDAUXGpNEooyVFDKgPOUyQM0H5HSdWzfVe2dsC0VmY5O7UU3VWVChZEJFSv2HpFpyzf4mOe8Dw_71k1_kouqa0n0YuBtTSxYEDtJrKG4qaxuTQt1kBTYrYBT67mABfUXQVwR9d_DVHSyd9fg7v5sVJtkYf8pywMUa-Mhys_p3MEwmt044u7-2Z7Y1y40dmzeQiisBL9MJXF7fTF8faQR3_BOzILRT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365686122</pqid></control><display><type>article</type><title>Acetylcholine-dopamine balance hypothesis in the striatum: An update</title><source>Wiley</source><creator>Aosaki, Toshihiko ; Miura, Masami ; Suzuki, Takeo ; Nishimura, Kinya ; Masuda, Masao</creator><creatorcontrib>Aosaki, Toshihiko ; Miura, Masami ; Suzuki, Takeo ; Nishimura, Kinya ; Masuda, Masao</creatorcontrib><description>The imbalance between cholinergic activity and dopaminergic activity in the striatum causes a variety of neurological disorders, such as Parkinson's disease. During sensorimotor learning, the arrival of a conditioned stimulus reporting a reward evokes a pause response in the firing of the tonically active cholinergic interneurons in targeted areas of the striatum, whereas the same stimulus triggers an increase in the firing frequency of the dopaminergic neurons in the substantia nigra pars compacta. The pause response of the cholinergic interneurons begins with an initial depolarizing phase followed by a pause in spike firing and ensuing rebound excitation. The timing of the pause phase coincides well with the surge in dopaminergic firing, indicating that a dramatic rise in dopamine (DA) release occurs while nicotinic receptors remain unbound by acetylcholine. The pause response begins with dopamine D5 receptor‐dependent synaptic plasticity in the cholinergic neurons and an increased GABAergic IPSP, which is followed by a long pause in firing through D2 and D5 receptor‐dependent modulation of ion channels. Inactivation of muscarinic receptors on the projection neurons eventually yields endocannabinoid‐mediated, dopamine‐dependent long‐term depression in the medium spiny projection neurons. Breakdown of acetylcholine‐dopamine balance hampers proper functioning of the cortico‐basal ganglia‐thalamocortical loop circuits. In Parkinson's disease, dopamine depletion blocks autoinhibition of acetylcholine release through muscarinic autoreceptors, leading to excessive acetylcholine release which eventually prunes spines of the indirect‐pathway projection neurons of the striatum and thus interrupts information transfer from motor command centers in the cerebral cortex. Geriatr Gerontol Int 2010; 10 (Suppl. 1): S148–S157.</description><identifier>ISSN: 1444-1586</identifier><identifier>EISSN: 1447-0594</identifier><identifier>DOI: 10.1111/j.1447-0594.2010.00588.x</identifier><identifier>PMID: 20590830</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>acetylcholine ; Acetylcholine - metabolism ; Animals ; basal ganglia ; Brain ; Cholinergic Fibers - metabolism ; Cholinergic Fibers - physiology ; Conditioning (Psychology) - physiology ; Corpus Striatum - metabolism ; dopamine ; Dopamine - metabolism ; Humans ; Interneurons - physiology ; Neurological disorders ; Neuronal Plasticity - physiology ; Neurons ; Neurotransmitters ; Parkinson's disease ; Parkinsonian Disorders - metabolism ; Parkinsonian Disorders - physiopathology ; striatum</subject><ispartof>Geriatrics &amp; gerontology international, 2010-07, Vol.10 (s1), p.S148-S157</ispartof><rights>2010 Japan Geriatrics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6418-33a1933f7a29831f81c5e74e2fa10b9ad9877aba5358add6a6c7656203f362a83</citedby><cites>FETCH-LOGICAL-c6418-33a1933f7a29831f81c5e74e2fa10b9ad9877aba5358add6a6c7656203f362a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20590830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aosaki, Toshihiko</creatorcontrib><creatorcontrib>Miura, Masami</creatorcontrib><creatorcontrib>Suzuki, Takeo</creatorcontrib><creatorcontrib>Nishimura, Kinya</creatorcontrib><creatorcontrib>Masuda, Masao</creatorcontrib><title>Acetylcholine-dopamine balance hypothesis in the striatum: An update</title><title>Geriatrics &amp; gerontology international</title><addtitle>Geriatr Gerontol Int</addtitle><description>The imbalance between cholinergic activity and dopaminergic activity in the striatum causes a variety of neurological disorders, such as Parkinson's disease. During sensorimotor learning, the arrival of a conditioned stimulus reporting a reward evokes a pause response in the firing of the tonically active cholinergic interneurons in targeted areas of the striatum, whereas the same stimulus triggers an increase in the firing frequency of the dopaminergic neurons in the substantia nigra pars compacta. The pause response of the cholinergic interneurons begins with an initial depolarizing phase followed by a pause in spike firing and ensuing rebound excitation. The timing of the pause phase coincides well with the surge in dopaminergic firing, indicating that a dramatic rise in dopamine (DA) release occurs while nicotinic receptors remain unbound by acetylcholine. The pause response begins with dopamine D5 receptor‐dependent synaptic plasticity in the cholinergic neurons and an increased GABAergic IPSP, which is followed by a long pause in firing through D2 and D5 receptor‐dependent modulation of ion channels. Inactivation of muscarinic receptors on the projection neurons eventually yields endocannabinoid‐mediated, dopamine‐dependent long‐term depression in the medium spiny projection neurons. Breakdown of acetylcholine‐dopamine balance hampers proper functioning of the cortico‐basal ganglia‐thalamocortical loop circuits. In Parkinson's disease, dopamine depletion blocks autoinhibition of acetylcholine release through muscarinic autoreceptors, leading to excessive acetylcholine release which eventually prunes spines of the indirect‐pathway projection neurons of the striatum and thus interrupts information transfer from motor command centers in the cerebral cortex. Geriatr Gerontol Int 2010; 10 (Suppl. 1): S148–S157.</description><subject>acetylcholine</subject><subject>Acetylcholine - metabolism</subject><subject>Animals</subject><subject>basal ganglia</subject><subject>Brain</subject><subject>Cholinergic Fibers - metabolism</subject><subject>Cholinergic Fibers - physiology</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Corpus Striatum - metabolism</subject><subject>dopamine</subject><subject>Dopamine - metabolism</subject><subject>Humans</subject><subject>Interneurons - physiology</subject><subject>Neurological disorders</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurotransmitters</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - metabolism</subject><subject>Parkinsonian Disorders - physiopathology</subject><subject>striatum</subject><issn>1444-1586</issn><issn>1447-0594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkTtPwzAUhS0E4lH4CyhiYUqx4_gRxFIVKCBUBkBILFe3iaOm5EWciPbf41DowAJefGR_5_hahxCP0SFz62wxZGGofCqicBhQd0qp0Hq43CL7m4vtLx36TGi5Rw6sXVDKVMTYLtkLHEA1p_vkchSbdpXH8yrPSuMnVY2FE94Mcyxj481XddXOjc2sl5WeU55tmwzbrjj3RqXX1Qm25pDspJhbc_S9D8jz9dXT-Ma_f5jcjkf3fixDpn3OkUWcpwqDSHOWahYLo0ITpMjoLMIk0krhDAUXGpNEooyVFDKgPOUyQM0H5HSdWzfVe2dsC0VmY5O7UU3VWVChZEJFSv2HpFpyzf4mOe8Dw_71k1_kouqa0n0YuBtTSxYEDtJrKG4qaxuTQt1kBTYrYBT67mABfUXQVwR9d_DVHSyd9fg7v5sVJtkYf8pywMUa-Mhys_p3MEwmt044u7-2Z7Y1y40dmzeQiisBL9MJXF7fTF8faQR3_BOzILRT</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Aosaki, Toshihiko</creator><creator>Miura, Masami</creator><creator>Suzuki, Takeo</creator><creator>Nishimura, Kinya</creator><creator>Masuda, Masao</creator><general>Blackwell Publishing Asia</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201007</creationdate><title>Acetylcholine-dopamine balance hypothesis in the striatum: An update</title><author>Aosaki, Toshihiko ; Miura, Masami ; Suzuki, Takeo ; Nishimura, Kinya ; Masuda, Masao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6418-33a1933f7a29831f81c5e74e2fa10b9ad9877aba5358add6a6c7656203f362a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>acetylcholine</topic><topic>Acetylcholine - metabolism</topic><topic>Animals</topic><topic>basal ganglia</topic><topic>Brain</topic><topic>Cholinergic Fibers - metabolism</topic><topic>Cholinergic Fibers - physiology</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Corpus Striatum - metabolism</topic><topic>dopamine</topic><topic>Dopamine - metabolism</topic><topic>Humans</topic><topic>Interneurons - physiology</topic><topic>Neurological disorders</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurotransmitters</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - metabolism</topic><topic>Parkinsonian Disorders - physiopathology</topic><topic>striatum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aosaki, Toshihiko</creatorcontrib><creatorcontrib>Miura, Masami</creatorcontrib><creatorcontrib>Suzuki, Takeo</creatorcontrib><creatorcontrib>Nishimura, Kinya</creatorcontrib><creatorcontrib>Masuda, Masao</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Geriatrics &amp; gerontology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aosaki, Toshihiko</au><au>Miura, Masami</au><au>Suzuki, Takeo</au><au>Nishimura, Kinya</au><au>Masuda, Masao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylcholine-dopamine balance hypothesis in the striatum: An update</atitle><jtitle>Geriatrics &amp; gerontology international</jtitle><addtitle>Geriatr Gerontol Int</addtitle><date>2010-07</date><risdate>2010</risdate><volume>10</volume><issue>s1</issue><spage>S148</spage><epage>S157</epage><pages>S148-S157</pages><issn>1444-1586</issn><eissn>1447-0594</eissn><abstract>The imbalance between cholinergic activity and dopaminergic activity in the striatum causes a variety of neurological disorders, such as Parkinson's disease. During sensorimotor learning, the arrival of a conditioned stimulus reporting a reward evokes a pause response in the firing of the tonically active cholinergic interneurons in targeted areas of the striatum, whereas the same stimulus triggers an increase in the firing frequency of the dopaminergic neurons in the substantia nigra pars compacta. The pause response of the cholinergic interneurons begins with an initial depolarizing phase followed by a pause in spike firing and ensuing rebound excitation. The timing of the pause phase coincides well with the surge in dopaminergic firing, indicating that a dramatic rise in dopamine (DA) release occurs while nicotinic receptors remain unbound by acetylcholine. The pause response begins with dopamine D5 receptor‐dependent synaptic plasticity in the cholinergic neurons and an increased GABAergic IPSP, which is followed by a long pause in firing through D2 and D5 receptor‐dependent modulation of ion channels. Inactivation of muscarinic receptors on the projection neurons eventually yields endocannabinoid‐mediated, dopamine‐dependent long‐term depression in the medium spiny projection neurons. Breakdown of acetylcholine‐dopamine balance hampers proper functioning of the cortico‐basal ganglia‐thalamocortical loop circuits. In Parkinson's disease, dopamine depletion blocks autoinhibition of acetylcholine release through muscarinic autoreceptors, leading to excessive acetylcholine release which eventually prunes spines of the indirect‐pathway projection neurons of the striatum and thus interrupts information transfer from motor command centers in the cerebral cortex. Geriatr Gerontol Int 2010; 10 (Suppl. 1): S148–S157.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><pmid>20590830</pmid><doi>10.1111/j.1447-0594.2010.00588.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1444-1586
ispartof Geriatrics & gerontology international, 2010-07, Vol.10 (s1), p.S148-S157
issn 1444-1586
1447-0594
language eng
recordid cdi_proquest_miscellaneous_746157977
source Wiley
subjects acetylcholine
Acetylcholine - metabolism
Animals
basal ganglia
Brain
Cholinergic Fibers - metabolism
Cholinergic Fibers - physiology
Conditioning (Psychology) - physiology
Corpus Striatum - metabolism
dopamine
Dopamine - metabolism
Humans
Interneurons - physiology
Neurological disorders
Neuronal Plasticity - physiology
Neurons
Neurotransmitters
Parkinson's disease
Parkinsonian Disorders - metabolism
Parkinsonian Disorders - physiopathology
striatum
title Acetylcholine-dopamine balance hypothesis in the striatum: An update
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylcholine-dopamine%20balance%20hypothesis%20in%20the%20striatum:%20An%20update&rft.jtitle=Geriatrics%20&%20gerontology%20international&rft.au=Aosaki,%20Toshihiko&rft.date=2010-07&rft.volume=10&rft.issue=s1&rft.spage=S148&rft.epage=S157&rft.pages=S148-S157&rft.issn=1444-1586&rft.eissn=1447-0594&rft_id=info:doi/10.1111/j.1447-0594.2010.00588.x&rft_dat=%3Cproquest_cross%3E746157977%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6418-33a1933f7a29831f81c5e74e2fa10b9ad9877aba5358add6a6c7656203f362a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=365686122&rft_id=info:pmid/20590830&rfr_iscdi=true