Loading…

Fluid flow pressure drop through an annular bed of spheres with wall effects

A model has been developed to predict the pressure drop for flow through an annular packed bed of spheres at random distribution. Ergun's equation, with a corrected flow velocity, is used. To consider the wall effect in the flow distribution, the annular section was divided into three regions:...

Full description

Saved in:
Bibliographic Details
Published in:Experimental thermal and fluid science 1998-07, Vol.17 (3), p.265-275
Main Authors: Sodré, J.R., Parise, J.A.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-18d0ef174e8c2e14d6cc56dcd6594097639193c4c9e5a6ae0f4992080491c1bc3
cites cdi_FETCH-LOGICAL-c405t-18d0ef174e8c2e14d6cc56dcd6594097639193c4c9e5a6ae0f4992080491c1bc3
container_end_page 275
container_issue 3
container_start_page 265
container_title Experimental thermal and fluid science
container_volume 17
creator Sodré, J.R.
Parise, J.A.R.
description A model has been developed to predict the pressure drop for flow through an annular packed bed of spheres at random distribution. Ergun's equation, with a corrected flow velocity, is used. To consider the wall effect in the flow distribution, the annular section was divided into three regions: the external and internal wall regions, and an intermediate one, called transition. To find an average flow velocity, to be used in Ergun's equation, a different treatment has been applied to the wall regions, with respect to the transition region. That was necessary due to the presence of a further wetted area and the distortion on the porosity distribution. Model prediction showed good agreement with experimental data. Experiments were carried out for fully developed turbulent flow of air, at steady state condition, through an annular bed with a radius ratio of 1.369 and a bed to particle diameter ratio of 8.258.
doi_str_mv 10.1016/S0894-1777(97)10022-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746164179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089417779710022X</els_id><sourcerecordid>746164179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-18d0ef174e8c2e14d6cc56dcd6594097639193c4c9e5a6ae0f4992080491c1bc3</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPIOQgqIfVJM0mm5OIWBUKHlToLaTJxEbS3TXZtfj2bm3xKgzM5fvnZz6ETim5ooSK6xdSKV5QKeWFkpeUEMaK-R4a0UqqgrFK7KPRH3KIjnL-IIRUjJIRmk1jHxz2sVnjNkHOfQLsUtPibpma_n2JTT1M3UeT8AIcbjzO7RIGFK9Dt8RrEyMG78F2-RgdeBMznOz2GL1N71_vHovZ88PT3e2ssJyUXUErR8BTyaGyDCh3wtpSOOtEqThRUkwUVRPLrYLSCAPEc6UYqQhX1NKFnYzR-fZum5rPHnKnVyFbiNHU0PRZSy6o4FSqgSy3pE1Nzgm8blNYmfStKdEbefpXnt6Y0UrqX3l6PuTOdg0mWxN9MrUN-S_MmORlWQ7YzRaD4duvAElnG6C24EIahGjXhH-KfgDnDoNC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746164179</pqid></control><display><type>article</type><title>Fluid flow pressure drop through an annular bed of spheres with wall effects</title><source>Elsevier</source><creator>Sodré, J.R. ; Parise, J.A.R.</creator><creatorcontrib>Sodré, J.R. ; Parise, J.A.R.</creatorcontrib><description>A model has been developed to predict the pressure drop for flow through an annular packed bed of spheres at random distribution. Ergun's equation, with a corrected flow velocity, is used. To consider the wall effect in the flow distribution, the annular section was divided into three regions: the external and internal wall regions, and an intermediate one, called transition. To find an average flow velocity, to be used in Ergun's equation, a different treatment has been applied to the wall regions, with respect to the transition region. That was necessary due to the presence of a further wetted area and the distortion on the porosity distribution. Model prediction showed good agreement with experimental data. Experiments were carried out for fully developed turbulent flow of air, at steady state condition, through an annular bed with a radius ratio of 1.369 and a bed to particle diameter ratio of 8.258.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/S0894-1777(97)10022-X</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Annular bed ; Applied sciences ; Chemical engineering ; Exact sciences and technology ; Heat and mass transfer. Packings, plates ; Porosity ; Pressure drop ; Spheres packing ; Transition flow ; Turbulent flow ; Wall flow</subject><ispartof>Experimental thermal and fluid science, 1998-07, Vol.17 (3), p.265-275</ispartof><rights>1998 Elsevier Science Inc.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-18d0ef174e8c2e14d6cc56dcd6594097639193c4c9e5a6ae0f4992080491c1bc3</citedby><cites>FETCH-LOGICAL-c405t-18d0ef174e8c2e14d6cc56dcd6594097639193c4c9e5a6ae0f4992080491c1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2274555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sodré, J.R.</creatorcontrib><creatorcontrib>Parise, J.A.R.</creatorcontrib><title>Fluid flow pressure drop through an annular bed of spheres with wall effects</title><title>Experimental thermal and fluid science</title><description>A model has been developed to predict the pressure drop for flow through an annular packed bed of spheres at random distribution. Ergun's equation, with a corrected flow velocity, is used. To consider the wall effect in the flow distribution, the annular section was divided into three regions: the external and internal wall regions, and an intermediate one, called transition. To find an average flow velocity, to be used in Ergun's equation, a different treatment has been applied to the wall regions, with respect to the transition region. That was necessary due to the presence of a further wetted area and the distortion on the porosity distribution. Model prediction showed good agreement with experimental data. Experiments were carried out for fully developed turbulent flow of air, at steady state condition, through an annular bed with a radius ratio of 1.369 and a bed to particle diameter ratio of 8.258.</description><subject>Annular bed</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Porosity</subject><subject>Pressure drop</subject><subject>Spheres packing</subject><subject>Transition flow</subject><subject>Turbulent flow</subject><subject>Wall flow</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPIOQgqIfVJM0mm5OIWBUKHlToLaTJxEbS3TXZtfj2bm3xKgzM5fvnZz6ETim5ooSK6xdSKV5QKeWFkpeUEMaK-R4a0UqqgrFK7KPRH3KIjnL-IIRUjJIRmk1jHxz2sVnjNkHOfQLsUtPibpma_n2JTT1M3UeT8AIcbjzO7RIGFK9Dt8RrEyMG78F2-RgdeBMznOz2GL1N71_vHovZ88PT3e2ssJyUXUErR8BTyaGyDCh3wtpSOOtEqThRUkwUVRPLrYLSCAPEc6UYqQhX1NKFnYzR-fZum5rPHnKnVyFbiNHU0PRZSy6o4FSqgSy3pE1Nzgm8blNYmfStKdEbefpXnt6Y0UrqX3l6PuTOdg0mWxN9MrUN-S_MmORlWQ7YzRaD4duvAElnG6C24EIahGjXhH-KfgDnDoNC</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Sodré, J.R.</creator><creator>Parise, J.A.R.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19980701</creationdate><title>Fluid flow pressure drop through an annular bed of spheres with wall effects</title><author>Sodré, J.R. ; Parise, J.A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-18d0ef174e8c2e14d6cc56dcd6594097639193c4c9e5a6ae0f4992080491c1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Annular bed</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Porosity</topic><topic>Pressure drop</topic><topic>Spheres packing</topic><topic>Transition flow</topic><topic>Turbulent flow</topic><topic>Wall flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sodré, J.R.</creatorcontrib><creatorcontrib>Parise, J.A.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sodré, J.R.</au><au>Parise, J.A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid flow pressure drop through an annular bed of spheres with wall effects</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>17</volume><issue>3</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>A model has been developed to predict the pressure drop for flow through an annular packed bed of spheres at random distribution. Ergun's equation, with a corrected flow velocity, is used. To consider the wall effect in the flow distribution, the annular section was divided into three regions: the external and internal wall regions, and an intermediate one, called transition. To find an average flow velocity, to be used in Ergun's equation, a different treatment has been applied to the wall regions, with respect to the transition region. That was necessary due to the presence of a further wetted area and the distortion on the porosity distribution. Model prediction showed good agreement with experimental data. Experiments were carried out for fully developed turbulent flow of air, at steady state condition, through an annular bed with a radius ratio of 1.369 and a bed to particle diameter ratio of 8.258.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0894-1777(97)10022-X</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 1998-07, Vol.17 (3), p.265-275
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_746164179
source Elsevier
subjects Annular bed
Applied sciences
Chemical engineering
Exact sciences and technology
Heat and mass transfer. Packings, plates
Porosity
Pressure drop
Spheres packing
Transition flow
Turbulent flow
Wall flow
title Fluid flow pressure drop through an annular bed of spheres with wall effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20flow%20pressure%20drop%20through%20an%20annular%20bed%20of%20spheres%20with%20wall%20effects&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Sodr%C3%A9,%20J.R.&rft.date=1998-07-01&rft.volume=17&rft.issue=3&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/S0894-1777(97)10022-X&rft_dat=%3Cproquest_cross%3E746164179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-18d0ef174e8c2e14d6cc56dcd6594097639193c4c9e5a6ae0f4992080491c1bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746164179&rft_id=info:pmid/&rfr_iscdi=true