Loading…

Boundary Shear in Circular Pipes Running Partially Full

The distribution of boundary shear stress in circular conduits flowing partially full, with and without a smooth flat bed simulating deposited sediments, has been examined experimentally ranging from 0.375 < F < 1.96 and 6.5 × 104 < R < 3.42 × 105, using the Preston tube technique The in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2000-04, Vol.126 (4), p.263-275
Main Authors: Knight, Donald W, Sterling, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a563t-efa77013b6d26d1117fd2554612f730685d67cd7b7ddfceee61e7f8827cd7cee3
cites cdi_FETCH-LOGICAL-a563t-efa77013b6d26d1117fd2554612f730685d67cd7b7ddfceee61e7f8827cd7cee3
container_end_page 275
container_issue 4
container_start_page 263
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 126
creator Knight, Donald W
Sterling, Mark
description The distribution of boundary shear stress in circular conduits flowing partially full, with and without a smooth flat bed simulating deposited sediments, has been examined experimentally ranging from 0.375 < F < 1.96 and 6.5 × 104 < R < 3.42 × 105, using the Preston tube technique The invert level of the flat bed and the water depth have been varied to simulate a wide range of possible flow conditions that may occur in culverts, sewers, and hydropower tunnels. The distribution of boundary shear stress around the wetted perimeter is shown to be highly sensitive to changes in cross-sectional shape. The results have been analyzed in terms of the variation of local global shear stress versus perimetric distance, and the percentage of the total shear force acting on the wall or bed of the conduit. The %SFw results have been shown to agree well with Knight's empirical formula for prismatic channels. The influence of secondary flows on the distribution of boundary shear stress and the implications of this for sediment transport have also been examined.
doi_str_mv 10.1061/(ASCE)0733-9429(2000)126:4(263)
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746166583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27215895</sourcerecordid><originalsourceid>FETCH-LOGICAL-a563t-efa77013b6d26d1117fd2554612f730685d67cd7b7ddfceee61e7f8827cd7cee3</originalsourceid><addsrcrecordid>eNqNkV1PwyAUhonRxPnxH3ph3HZR5UCB1gsTndNpFl38SLwjrFDtwtoJ64X_Xuqm3qkkhAN58p4THoS6gI8AczjunT0Mhn0sKI2zhGQ9gjHuA-EnSY9w2t9AHcgSGosM403U-ea20Y73M4wh4VnaQeK8biqt3Hv08GqUi8oqGpQub2yoJ-XC-Oi-qaqyeokmyi1LZe17dNlYu4e2CmW92V-fu-jpcvg4GMXju6vrwdk4VozTZWwKJQQGOuWacA0AotCEsYQDKQTFPGWai1yLqdC6yI0xHIwo0pS0j-FOd1F3lbtw9Vtj_FLOS58ba1Vl6sZLEaI4ZykN5OGvJBEEWJqx_4CYAcF_giAYiIwkATxdgbmrvXemkAtXzsOnSsCylSVlK0u2EmQrQbayZJAlExlkhYCDdSflc2ULp6q89D8plDKatn2eV1igjJzVjavC38ub0fD2Ig2JIRC3Kwk7xH7W8DXC7xN8AIyIqzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17517924</pqid></control><display><type>article</type><title>Boundary Shear in Circular Pipes Running Partially Full</title><source>ASCE美国土木工程师学会电子期刊和会议录</source><creator>Knight, Donald W ; Sterling, Mark</creator><creatorcontrib>Knight, Donald W ; Sterling, Mark</creatorcontrib><description>The distribution of boundary shear stress in circular conduits flowing partially full, with and without a smooth flat bed simulating deposited sediments, has been examined experimentally ranging from 0.375 &lt; F &lt; 1.96 and 6.5 × 104 &lt; R &lt; 3.42 × 105, using the Preston tube technique The invert level of the flat bed and the water depth have been varied to simulate a wide range of possible flow conditions that may occur in culverts, sewers, and hydropower tunnels. The distribution of boundary shear stress around the wetted perimeter is shown to be highly sensitive to changes in cross-sectional shape. The results have been analyzed in terms of the variation of local global shear stress versus perimetric distance, and the percentage of the total shear force acting on the wall or bed of the conduit. The %SFw results have been shown to agree well with Knight's empirical formula for prismatic channels. The influence of secondary flows on the distribution of boundary shear stress and the implications of this for sediment transport have also been examined.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(2000)126:4(263)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Channel flow ; Culverts ; Exact sciences and technology ; Hydraulic constructions ; Mathematical models ; Sediment transport ; Sewers ; Shear stress ; TECHNICAL PAPERS ; Tunnels ; Water levels</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2000-04, Vol.126 (4), p.263-275</ispartof><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a563t-efa77013b6d26d1117fd2554612f730685d67cd7b7ddfceee61e7f8827cd7cee3</citedby><cites>FETCH-LOGICAL-a563t-efa77013b6d26d1117fd2554612f730685d67cd7b7ddfceee61e7f8827cd7cee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(2000)126:4(263)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(2000)126:4(263)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76191,76199</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1335384$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Knight, Donald W</creatorcontrib><creatorcontrib>Sterling, Mark</creatorcontrib><title>Boundary Shear in Circular Pipes Running Partially Full</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>The distribution of boundary shear stress in circular conduits flowing partially full, with and without a smooth flat bed simulating deposited sediments, has been examined experimentally ranging from 0.375 &lt; F &lt; 1.96 and 6.5 × 104 &lt; R &lt; 3.42 × 105, using the Preston tube technique The invert level of the flat bed and the water depth have been varied to simulate a wide range of possible flow conditions that may occur in culverts, sewers, and hydropower tunnels. The distribution of boundary shear stress around the wetted perimeter is shown to be highly sensitive to changes in cross-sectional shape. The results have been analyzed in terms of the variation of local global shear stress versus perimetric distance, and the percentage of the total shear force acting on the wall or bed of the conduit. The %SFw results have been shown to agree well with Knight's empirical formula for prismatic channels. The influence of secondary flows on the distribution of boundary shear stress and the implications of this for sediment transport have also been examined.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Channel flow</subject><subject>Culverts</subject><subject>Exact sciences and technology</subject><subject>Hydraulic constructions</subject><subject>Mathematical models</subject><subject>Sediment transport</subject><subject>Sewers</subject><subject>Shear stress</subject><subject>TECHNICAL PAPERS</subject><subject>Tunnels</subject><subject>Water levels</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkV1PwyAUhonRxPnxH3ph3HZR5UCB1gsTndNpFl38SLwjrFDtwtoJ64X_Xuqm3qkkhAN58p4THoS6gI8AczjunT0Mhn0sKI2zhGQ9gjHuA-EnSY9w2t9AHcgSGosM403U-ea20Y73M4wh4VnaQeK8biqt3Hv08GqUi8oqGpQub2yoJ-XC-Oi-qaqyeokmyi1LZe17dNlYu4e2CmW92V-fu-jpcvg4GMXju6vrwdk4VozTZWwKJQQGOuWacA0AotCEsYQDKQTFPGWai1yLqdC6yI0xHIwo0pS0j-FOd1F3lbtw9Vtj_FLOS58ba1Vl6sZLEaI4ZykN5OGvJBEEWJqx_4CYAcF_giAYiIwkATxdgbmrvXemkAtXzsOnSsCylSVlK0u2EmQrQbayZJAlExlkhYCDdSflc2ULp6q89D8plDKatn2eV1igjJzVjavC38ub0fD2Ig2JIRC3Kwk7xH7W8DXC7xN8AIyIqzg</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Knight, Donald W</creator><creator>Sterling, Mark</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TC</scope></search><sort><creationdate>20000401</creationdate><title>Boundary Shear in Circular Pipes Running Partially Full</title><author>Knight, Donald W ; Sterling, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a563t-efa77013b6d26d1117fd2554612f730685d67cd7b7ddfceee61e7f8827cd7cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Channel flow</topic><topic>Culverts</topic><topic>Exact sciences and technology</topic><topic>Hydraulic constructions</topic><topic>Mathematical models</topic><topic>Sediment transport</topic><topic>Sewers</topic><topic>Shear stress</topic><topic>TECHNICAL PAPERS</topic><topic>Tunnels</topic><topic>Water levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, Donald W</creatorcontrib><creatorcontrib>Sterling, Mark</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, Donald W</au><au>Sterling, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Shear in Circular Pipes Running Partially Full</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2000-04-01</date><risdate>2000</risdate><volume>126</volume><issue>4</issue><spage>263</spage><epage>275</epage><pages>263-275</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>The distribution of boundary shear stress in circular conduits flowing partially full, with and without a smooth flat bed simulating deposited sediments, has been examined experimentally ranging from 0.375 &lt; F &lt; 1.96 and 6.5 × 104 &lt; R &lt; 3.42 × 105, using the Preston tube technique The invert level of the flat bed and the water depth have been varied to simulate a wide range of possible flow conditions that may occur in culverts, sewers, and hydropower tunnels. The distribution of boundary shear stress around the wetted perimeter is shown to be highly sensitive to changes in cross-sectional shape. The results have been analyzed in terms of the variation of local global shear stress versus perimetric distance, and the percentage of the total shear force acting on the wall or bed of the conduit. The %SFw results have been shown to agree well with Knight's empirical formula for prismatic channels. The influence of secondary flows on the distribution of boundary shear stress and the implications of this for sediment transport have also been examined.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(2000)126:4(263)</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 2000-04, Vol.126 (4), p.263-275
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_miscellaneous_746166583
source ASCE美国土木工程师学会电子期刊和会议录
subjects Applied sciences
Buildings. Public works
Channel flow
Culverts
Exact sciences and technology
Hydraulic constructions
Mathematical models
Sediment transport
Sewers
Shear stress
TECHNICAL PAPERS
Tunnels
Water levels
title Boundary Shear in Circular Pipes Running Partially Full
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Shear%20in%20Circular%20Pipes%20Running%20Partially%20Full&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Knight,%20Donald%20W&rft.date=2000-04-01&rft.volume=126&rft.issue=4&rft.spage=263&rft.epage=275&rft.pages=263-275&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(2000)126:4(263)&rft_dat=%3Cproquest_cross%3E27215895%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a563t-efa77013b6d26d1117fd2554612f730685d67cd7b7ddfceee61e7f8827cd7cee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17517924&rft_id=info:pmid/&rfr_iscdi=true