Loading…
Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module
Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal perfor...
Saved in:
Published in: | Fusion engineering and design 2000-11, Vol.49, p.407-415 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3 |
container_end_page | 415 |
container_issue | |
container_start_page | 407 |
container_title | Fusion engineering and design |
container_volume | 49 |
creator | Youchison, Dennis L North, Mark T Lindemuth, James E McDonald, Jimmie M Lutz, Thomas J |
description | Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m
2 on a 2-cm
2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers. |
doi_str_mv | 10.1016/S0920-3796(00)00243-X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746170050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092037960000243X</els_id><sourcerecordid>746170050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</originalsourceid><addsrcrecordid>eNqFkEtLJDEQgIO44DjrTxACHlSwdyud9OskIj4WBvawCt5CHtVMJN0Zk-5Z_PdGR7wKBVWBr6pSHyHHDH4xYPXvf9CVUPCmq88AzgFKwYunPbJgbcOLhnX1Pll8IQfkMKVnANbkWJDnhzXGQXm6wdiHXI0GqRot7X34T92YJqWdd5PDlF9U0WH2kyvMWo0j-gu6Ru_moTAheLQXdBNimBMdcMojrdtinEKkQ7Czx5_kR698wqPPvCSPtzcP1_fF6u_dn-urVWF43U1FqzVUolK67ITOdSMEB8OUEqrVjIvKskoz25aNrTgrhbZcaINKmIaJ2iBfktPd3E0MLzOmSQ4uGfRejZg_JxtR5-OhgkxWO9LEkFLEXm6iG1R8lQzku1r5oVa-e5MA8kOtfMp9J58bVDLK9zFbc-mruRVd3dWZutxRmI_dOowyGYfZr3URzSRtcN_seQPmMo6-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746170050</pqid></control><display><type>article</type><title>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</title><source>ScienceDirect Freedom Collection</source><creator>Youchison, Dennis L ; North, Mark T ; Lindemuth, James E ; McDonald, Jimmie M ; Lutz, Thomas J</creator><creatorcontrib>Youchison, Dennis L ; North, Mark T ; Lindemuth, James E ; McDonald, Jimmie M ; Lutz, Thomas J</creatorcontrib><description>Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m
2 on a 2-cm
2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/S0920-3796(00)00243-X</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Divertor ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow instabilities ; Heat flux ; Helium ; Installations for energy generation and conversion: thermal and electrical energy ; Multi-channel ; Phase transitions ; Plasma facing components ; Porous materials ; Porous metal ; Thermal performance</subject><ispartof>Fusion engineering and design, 2000-11, Vol.49, p.407-415</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</citedby><cites>FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=849696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Youchison, Dennis L</creatorcontrib><creatorcontrib>North, Mark T</creatorcontrib><creatorcontrib>Lindemuth, James E</creatorcontrib><creatorcontrib>McDonald, Jimmie M</creatorcontrib><creatorcontrib>Lutz, Thomas J</creatorcontrib><title>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</title><title>Fusion engineering and design</title><description>Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m
2 on a 2-cm
2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Divertor</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow instabilities</subject><subject>Heat flux</subject><subject>Helium</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Multi-channel</subject><subject>Phase transitions</subject><subject>Plasma facing components</subject><subject>Porous materials</subject><subject>Porous metal</subject><subject>Thermal performance</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLJDEQgIO44DjrTxACHlSwdyud9OskIj4WBvawCt5CHtVMJN0Zk-5Z_PdGR7wKBVWBr6pSHyHHDH4xYPXvf9CVUPCmq88AzgFKwYunPbJgbcOLhnX1Pll8IQfkMKVnANbkWJDnhzXGQXm6wdiHXI0GqRot7X34T92YJqWdd5PDlF9U0WH2kyvMWo0j-gu6Ru_moTAheLQXdBNimBMdcMojrdtinEKkQ7Czx5_kR698wqPPvCSPtzcP1_fF6u_dn-urVWF43U1FqzVUolK67ITOdSMEB8OUEqrVjIvKskoz25aNrTgrhbZcaINKmIaJ2iBfktPd3E0MLzOmSQ4uGfRejZg_JxtR5-OhgkxWO9LEkFLEXm6iG1R8lQzku1r5oVa-e5MA8kOtfMp9J58bVDLK9zFbc-mruRVd3dWZutxRmI_dOowyGYfZr3URzSRtcN_seQPmMo6-</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Youchison, Dennis L</creator><creator>North, Mark T</creator><creator>Lindemuth, James E</creator><creator>McDonald, Jimmie M</creator><creator>Lutz, Thomas J</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>20001101</creationdate><title>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</title><author>Youchison, Dennis L ; North, Mark T ; Lindemuth, James E ; McDonald, Jimmie M ; Lutz, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Divertor</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow instabilities</topic><topic>Heat flux</topic><topic>Helium</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Multi-channel</topic><topic>Phase transitions</topic><topic>Plasma facing components</topic><topic>Porous materials</topic><topic>Porous metal</topic><topic>Thermal performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youchison, Dennis L</creatorcontrib><creatorcontrib>North, Mark T</creatorcontrib><creatorcontrib>Lindemuth, James E</creatorcontrib><creatorcontrib>McDonald, Jimmie M</creatorcontrib><creatorcontrib>Lutz, Thomas J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youchison, Dennis L</au><au>North, Mark T</au><au>Lindemuth, James E</au><au>McDonald, Jimmie M</au><au>Lutz, Thomas J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</atitle><jtitle>Fusion engineering and design</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>49</volume><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m
2 on a 2-cm
2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0920-3796(00)00243-X</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2000-11, Vol.49, p.407-415 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_miscellaneous_746170050 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Controled nuclear fusion plants Divertor Energy Energy. Thermal use of fuels Exact sciences and technology Flow instabilities Heat flux Helium Installations for energy generation and conversion: thermal and electrical energy Multi-channel Phase transitions Plasma facing components Porous materials Porous metal Thermal performance |
title | Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20performance%20and%20flow%20instabilities%20in%20a%20multi-channel,%20helium-cooled,%20porous%20metal%20divertor%20module&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Youchison,%20Dennis%20L&rft.date=2000-11-01&rft.volume=49&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/S0920-3796(00)00243-X&rft_dat=%3Cproquest_cross%3E746170050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746170050&rft_id=info:pmid/&rfr_iscdi=true |