Loading…

Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module

Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal perfor...

Full description

Saved in:
Bibliographic Details
Published in:Fusion engineering and design 2000-11, Vol.49, p.407-415
Main Authors: Youchison, Dennis L, North, Mark T, Lindemuth, James E, McDonald, Jimmie M, Lutz, Thomas J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3
cites cdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3
container_end_page 415
container_issue
container_start_page 407
container_title Fusion engineering and design
container_volume 49
creator Youchison, Dennis L
North, Mark T
Lindemuth, James E
McDonald, Jimmie M
Lutz, Thomas J
description Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m 2 on a 2-cm 2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers.
doi_str_mv 10.1016/S0920-3796(00)00243-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746170050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092037960000243X</els_id><sourcerecordid>746170050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</originalsourceid><addsrcrecordid>eNqFkEtLJDEQgIO44DjrTxACHlSwdyud9OskIj4WBvawCt5CHtVMJN0Zk-5Z_PdGR7wKBVWBr6pSHyHHDH4xYPXvf9CVUPCmq88AzgFKwYunPbJgbcOLhnX1Pll8IQfkMKVnANbkWJDnhzXGQXm6wdiHXI0GqRot7X34T92YJqWdd5PDlF9U0WH2kyvMWo0j-gu6Ru_moTAheLQXdBNimBMdcMojrdtinEKkQ7Czx5_kR698wqPPvCSPtzcP1_fF6u_dn-urVWF43U1FqzVUolK67ITOdSMEB8OUEqrVjIvKskoz25aNrTgrhbZcaINKmIaJ2iBfktPd3E0MLzOmSQ4uGfRejZg_JxtR5-OhgkxWO9LEkFLEXm6iG1R8lQzku1r5oVa-e5MA8kOtfMp9J58bVDLK9zFbc-mruRVd3dWZutxRmI_dOowyGYfZr3URzSRtcN_seQPmMo6-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746170050</pqid></control><display><type>article</type><title>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</title><source>ScienceDirect Freedom Collection</source><creator>Youchison, Dennis L ; North, Mark T ; Lindemuth, James E ; McDonald, Jimmie M ; Lutz, Thomas J</creator><creatorcontrib>Youchison, Dennis L ; North, Mark T ; Lindemuth, James E ; McDonald, Jimmie M ; Lutz, Thomas J</creatorcontrib><description>Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m 2 on a 2-cm 2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/S0920-3796(00)00243-X</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Divertor ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow instabilities ; Heat flux ; Helium ; Installations for energy generation and conversion: thermal and electrical energy ; Multi-channel ; Phase transitions ; Plasma facing components ; Porous materials ; Porous metal ; Thermal performance</subject><ispartof>Fusion engineering and design, 2000-11, Vol.49, p.407-415</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</citedby><cites>FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=849696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Youchison, Dennis L</creatorcontrib><creatorcontrib>North, Mark T</creatorcontrib><creatorcontrib>Lindemuth, James E</creatorcontrib><creatorcontrib>McDonald, Jimmie M</creatorcontrib><creatorcontrib>Lutz, Thomas J</creatorcontrib><title>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</title><title>Fusion engineering and design</title><description>Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m 2 on a 2-cm 2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Divertor</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow instabilities</subject><subject>Heat flux</subject><subject>Helium</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Multi-channel</subject><subject>Phase transitions</subject><subject>Plasma facing components</subject><subject>Porous materials</subject><subject>Porous metal</subject><subject>Thermal performance</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLJDEQgIO44DjrTxACHlSwdyud9OskIj4WBvawCt5CHtVMJN0Zk-5Z_PdGR7wKBVWBr6pSHyHHDH4xYPXvf9CVUPCmq88AzgFKwYunPbJgbcOLhnX1Pll8IQfkMKVnANbkWJDnhzXGQXm6wdiHXI0GqRot7X34T92YJqWdd5PDlF9U0WH2kyvMWo0j-gu6Ru_moTAheLQXdBNimBMdcMojrdtinEKkQ7Czx5_kR698wqPPvCSPtzcP1_fF6u_dn-urVWF43U1FqzVUolK67ITOdSMEB8OUEqrVjIvKskoz25aNrTgrhbZcaINKmIaJ2iBfktPd3E0MLzOmSQ4uGfRejZg_JxtR5-OhgkxWO9LEkFLEXm6iG1R8lQzku1r5oVa-e5MA8kOtfMp9J58bVDLK9zFbc-mruRVd3dWZutxRmI_dOowyGYfZr3URzSRtcN_seQPmMo6-</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Youchison, Dennis L</creator><creator>North, Mark T</creator><creator>Lindemuth, James E</creator><creator>McDonald, Jimmie M</creator><creator>Lutz, Thomas J</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>20001101</creationdate><title>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</title><author>Youchison, Dennis L ; North, Mark T ; Lindemuth, James E ; McDonald, Jimmie M ; Lutz, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Divertor</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow instabilities</topic><topic>Heat flux</topic><topic>Helium</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Multi-channel</topic><topic>Phase transitions</topic><topic>Plasma facing components</topic><topic>Porous materials</topic><topic>Porous metal</topic><topic>Thermal performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youchison, Dennis L</creatorcontrib><creatorcontrib>North, Mark T</creatorcontrib><creatorcontrib>Lindemuth, James E</creatorcontrib><creatorcontrib>McDonald, Jimmie M</creatorcontrib><creatorcontrib>Lutz, Thomas J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youchison, Dennis L</au><au>North, Mark T</au><au>Lindemuth, James E</au><au>McDonald, Jimmie M</au><au>Lutz, Thomas J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module</atitle><jtitle>Fusion engineering and design</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>49</volume><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Pressurized helium is under consideration for cooling Langmuir probes and plasma facing components of next generation fusion experiments. Helium is non-corrosive, does not activate, separated easily from tritium, vacuum compatible, and undergoes no phase transformations. Recently, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up, designed and fabricated by Thermacore Inc., was evaluated on Sandia's 30 kW Electron Beam Test System equipped with a closed helium flow loop. The module uses short circumferential flow paths to minimize pressure drops and pumping requirements while achieving optimal thermal performance by providing a very large effective surface area. The module was tested under both uniform and non-uniform heat loads to assess the effects of mass flow instabilities. It survived a maximum absorbed heat flux of 29.5 MW/m 2 on a 2-cm 2 area. Results on the power sharing between the two channels is presented and compared with that of a previous design. These experimental results coupled with appropriate modeling provide insight on flow instabilities in multi-channel, helium-cooled heat exchangers.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0920-3796(00)00243-X</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2000-11, Vol.49, p.407-415
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_miscellaneous_746170050
source ScienceDirect Freedom Collection
subjects Applied sciences
Controled nuclear fusion plants
Divertor
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Flow instabilities
Heat flux
Helium
Installations for energy generation and conversion: thermal and electrical energy
Multi-channel
Phase transitions
Plasma facing components
Porous materials
Porous metal
Thermal performance
title Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20performance%20and%20flow%20instabilities%20in%20a%20multi-channel,%20helium-cooled,%20porous%20metal%20divertor%20module&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Youchison,%20Dennis%20L&rft.date=2000-11-01&rft.volume=49&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/S0920-3796(00)00243-X&rft_dat=%3Cproquest_cross%3E746170050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-8bb0545ab294bbb074430c1aa4a8b1345d15b1d827d53124bd34bcea4c7146ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746170050&rft_id=info:pmid/&rfr_iscdi=true