Loading…

Dynamic Characteristics of Layered Beam with Flexible Core

This paper presents an analytical theory to define the dynamic characteristics of a layered beam which is composed of two parallel beams of uniform properties with a flexible core in-between. This flexible core may be made of a kind of viscoelastic material in order to achieve a high shock-absorbing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and acoustics 1994-07, Vol.116 (3), p.350-356
Main Authors: Chen, Y.-H, Sheu, J.-T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a308t-17f29ea6532c6af7fcf219a6c2acf2d817c9e034f2a8d3f03a602530cdcbab63
cites
container_end_page 356
container_issue 3
container_start_page 350
container_title Journal of vibration and acoustics
container_volume 116
creator Chen, Y.-H
Sheu, J.-T
description This paper presents an analytical theory to define the dynamic characteristics of a layered beam which is composed of two parallel beams of uniform properties with a flexible core in-between. This flexible core may be made of a kind of viscoelastic material in order to achieve a high shock-absorbing performance. The dynamic interactions between these two parallel beams are especially studied. The dynamic shape functions and the dynamic stiffness matrix of a layered-beam element are established based on the analytical model of two parallel damped Timoshenko beams, connected to each other by the vertical springs and dashpots uniformly distributed along the beam length. Some simple layered beams are employed as the application examples for demonstrations and discussions.
doi_str_mv 10.1115/1.2930435
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746185240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746185240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-17f29ea6532c6af7fcf219a6c2acf2d817c9e034f2a8d3f03a602530cdcbab63</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqUwMLN4QEIMKb5-JA4bBApIlVi6W7eOrbrKA-xU0H9PqlZM9wzf-aR7CLkGNgMA9QAzXgomhTohE1BcZ7rkxemYmdRZyRg_JxcpbRgDIZSakMeXXYdtsLRaY0Q7uBjSEGyivacL3LnoavrssKU_YVjTeeN-w6pxtOqjuyRnHpvkro53Spbz12X1ni0-3z6qp0WGgukhg8Lz0mGuBLc5-sJbz6HE3HIcU62hsKVjQnqOuhaeCcwZV4LZ2q5wlYspuTtov2L_vXVpMG1I1jUNdq7fJlPIHLTiko3k_YG0sU8pOm--Ymgx7gwws1_HgDmuM7K3Rysmi42P2NmQ_gsSdK75XnlzwDC1zmz6bezGV42UIDUXf90Aa4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746185240</pqid></control><display><type>article</type><title>Dynamic Characteristics of Layered Beam with Flexible Core</title><source>ASME journals archive 1980-1999</source><creator>Chen, Y.-H ; Sheu, J.-T</creator><creatorcontrib>Chen, Y.-H ; Sheu, J.-T</creatorcontrib><description>This paper presents an analytical theory to define the dynamic characteristics of a layered beam which is composed of two parallel beams of uniform properties with a flexible core in-between. This flexible core may be made of a kind of viscoelastic material in order to achieve a high shock-absorbing performance. The dynamic interactions between these two parallel beams are especially studied. The dynamic shape functions and the dynamic stiffness matrix of a layered-beam element are established based on the analytical model of two parallel damped Timoshenko beams, connected to each other by the vertical springs and dashpots uniformly distributed along the beam length. Some simple layered beams are employed as the application examples for demonstrations and discussions.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.2930435</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Boundary value problems ; Dynamic response ; Exact sciences and technology ; Flexible structures ; Fundamental areas of phenomenology (including applications) ; Mathematical models ; Matrix algebra ; Physics ; Solid mechanics ; Structural analysis ; Structural and continuum mechanics ; Vibration control ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations (mechanical) ; Vibrations and mechanical waves</subject><ispartof>Journal of vibration and acoustics, 1994-07, Vol.116 (3), p.350-356</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a308t-17f29ea6532c6af7fcf219a6c2acf2d817c9e034f2a8d3f03a602530cdcbab63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38519</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4186820$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Y.-H</creatorcontrib><creatorcontrib>Sheu, J.-T</creatorcontrib><title>Dynamic Characteristics of Layered Beam with Flexible Core</title><title>Journal of vibration and acoustics</title><addtitle>J. Vib. Acoust</addtitle><description>This paper presents an analytical theory to define the dynamic characteristics of a layered beam which is composed of two parallel beams of uniform properties with a flexible core in-between. This flexible core may be made of a kind of viscoelastic material in order to achieve a high shock-absorbing performance. The dynamic interactions between these two parallel beams are especially studied. The dynamic shape functions and the dynamic stiffness matrix of a layered-beam element are established based on the analytical model of two parallel damped Timoshenko beams, connected to each other by the vertical springs and dashpots uniformly distributed along the beam length. Some simple layered beams are employed as the application examples for demonstrations and discussions.</description><subject>Boundary value problems</subject><subject>Dynamic response</subject><subject>Exact sciences and technology</subject><subject>Flexible structures</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical models</subject><subject>Matrix algebra</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural analysis</subject><subject>Structural and continuum mechanics</subject><subject>Vibration control</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations (mechanical)</subject><subject>Vibrations and mechanical waves</subject><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqUwMLN4QEIMKb5-JA4bBApIlVi6W7eOrbrKA-xU0H9PqlZM9wzf-aR7CLkGNgMA9QAzXgomhTohE1BcZ7rkxemYmdRZyRg_JxcpbRgDIZSakMeXXYdtsLRaY0Q7uBjSEGyivacL3LnoavrssKU_YVjTeeN-w6pxtOqjuyRnHpvkro53Spbz12X1ni0-3z6qp0WGgukhg8Lz0mGuBLc5-sJbz6HE3HIcU62hsKVjQnqOuhaeCcwZV4LZ2q5wlYspuTtov2L_vXVpMG1I1jUNdq7fJlPIHLTiko3k_YG0sU8pOm--Ymgx7gwws1_HgDmuM7K3Rysmi42P2NmQ_gsSdK75XnlzwDC1zmz6bezGV42UIDUXf90Aa4g</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Chen, Y.-H</creator><creator>Sheu, J.-T</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19940701</creationdate><title>Dynamic Characteristics of Layered Beam with Flexible Core</title><author>Chen, Y.-H ; Sheu, J.-T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-17f29ea6532c6af7fcf219a6c2acf2d817c9e034f2a8d3f03a602530cdcbab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Boundary value problems</topic><topic>Dynamic response</topic><topic>Exact sciences and technology</topic><topic>Flexible structures</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical models</topic><topic>Matrix algebra</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural analysis</topic><topic>Structural and continuum mechanics</topic><topic>Vibration control</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations (mechanical)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Y.-H</creatorcontrib><creatorcontrib>Sheu, J.-T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Y.-H</au><au>Sheu, J.-T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Characteristics of Layered Beam with Flexible Core</atitle><jtitle>Journal of vibration and acoustics</jtitle><stitle>J. Vib. Acoust</stitle><date>1994-07-01</date><risdate>1994</risdate><volume>116</volume><issue>3</issue><spage>350</spage><epage>356</epage><pages>350-356</pages><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>This paper presents an analytical theory to define the dynamic characteristics of a layered beam which is composed of two parallel beams of uniform properties with a flexible core in-between. This flexible core may be made of a kind of viscoelastic material in order to achieve a high shock-absorbing performance. The dynamic interactions between these two parallel beams are especially studied. The dynamic shape functions and the dynamic stiffness matrix of a layered-beam element are established based on the analytical model of two parallel damped Timoshenko beams, connected to each other by the vertical springs and dashpots uniformly distributed along the beam length. Some simple layered beams are employed as the application examples for demonstrations and discussions.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2930435</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1048-9002
ispartof Journal of vibration and acoustics, 1994-07, Vol.116 (3), p.350-356
issn 1048-9002
1528-8927
language eng
recordid cdi_proquest_miscellaneous_746185240
source ASME journals archive 1980-1999
subjects Boundary value problems
Dynamic response
Exact sciences and technology
Flexible structures
Fundamental areas of phenomenology (including applications)
Mathematical models
Matrix algebra
Physics
Solid mechanics
Structural analysis
Structural and continuum mechanics
Vibration control
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations (mechanical)
Vibrations and mechanical waves
title Dynamic Characteristics of Layered Beam with Flexible Core
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Characteristics%20of%20Layered%20Beam%20with%20Flexible%20Core&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Chen,%20Y.-H&rft.date=1994-07-01&rft.volume=116&rft.issue=3&rft.spage=350&rft.epage=356&rft.pages=350-356&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.2930435&rft_dat=%3Cproquest_cross%3E746185240%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a308t-17f29ea6532c6af7fcf219a6c2acf2d817c9e034f2a8d3f03a602530cdcbab63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746185240&rft_id=info:pmid/&rfr_iscdi=true