Loading…

Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data

Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of ext...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management 2010-04, Vol.24 (6), p.1229-1249
Main Authors: AghaKouchak, Amir, Nasrollahi, Nasrin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3
cites cdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3
container_end_page 1249
container_issue 6
container_start_page 1229
container_title Water resources management
container_volume 24
creator AghaKouchak, Amir
Nasrollahi, Nasrin
description Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.
doi_str_mv 10.1007/s11269-009-9493-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746210945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987317271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</originalsourceid><addsrcrecordid>eNp9kF1rFTEQhoMoeKz-AK8MgngVnUmyycmltLUttLS01tswm03Klv04JntA_70pWyx40avJkOd9GF7G3iN8QQD7tSBK4wSAE047JdQLtsHGKoGmgZdsA06C0Fbja_amlHuAmnKwYdc3cezFjjKNccl94DR1_OppPZtSzHEKkc-JH_9echwj_0nDPvKLuYtD4WnO_Jr6KdEw8CNa6C17Vd8lvnucB-z2-_GPw1NxfnlydvjtXAQNuAgZu051ymHbdc5ItLI1SW-NpQBSI6VWYlRBN9F0ltoWFWqrlG4RnVFtUAfs8-rd5fnXPpbFj30JcRhoivO-eKurFZxuKvnxP_J-3uepHuclGrndAroK4QqFPJeSY_K73I-U_3gE_9CxXzv2tTj_0LFXNfPpUUwl0JAyTaEv_4JSNg0qaSonV67Ur-ku5qcDnpN_WEOJZk93uYpvbySgAtyibWoJfwFwtpNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216288019</pqid></control><display><type>article</type><title>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>AghaKouchak, Amir ; Nasrollahi, Nasrin</creator><creatorcontrib>AghaKouchak, Amir ; Nasrollahi, Nasrin</creatorcontrib><description>Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-009-9493-3</identifier><identifier>CODEN: WRMAEJ</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Atmospheric Sciences ; Civil Engineering ; Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Environment ; Exact sciences and technology ; Extreme rainfall ; Extreme value index ; Extreme weather ; Generalized Pareto Distribution ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrologic data ; Hydrology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Parameter estimation ; Precipitation ; Rainfall ; Rainfall measurement ; Risk assessment ; Semi-parametric and parametric estimators ; Studies ; Time series ; Water resources ; Water resources management</subject><ispartof>Water resources management, 2010-04, Vol.24 (6), p.1229-1249</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</citedby><cites>FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/216288019/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/216288019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22551326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AghaKouchak, Amir</creatorcontrib><creatorcontrib>Nasrollahi, Nasrin</creatorcontrib><title>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.</description><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Environment</subject><subject>Exact sciences and technology</subject><subject>Extreme rainfall</subject><subject>Extreme value index</subject><subject>Extreme weather</subject><subject>Generalized Pareto Distribution</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Parameter estimation</subject><subject>Precipitation</subject><subject>Rainfall</subject><subject>Rainfall measurement</subject><subject>Risk assessment</subject><subject>Semi-parametric and parametric estimators</subject><subject>Studies</subject><subject>Time series</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kF1rFTEQhoMoeKz-AK8MgngVnUmyycmltLUttLS01tswm03Klv04JntA_70pWyx40avJkOd9GF7G3iN8QQD7tSBK4wSAE047JdQLtsHGKoGmgZdsA06C0Fbja_amlHuAmnKwYdc3cezFjjKNccl94DR1_OppPZtSzHEKkc-JH_9echwj_0nDPvKLuYtD4WnO_Jr6KdEw8CNa6C17Vd8lvnucB-z2-_GPw1NxfnlydvjtXAQNuAgZu051ymHbdc5ItLI1SW-NpQBSI6VWYlRBN9F0ltoWFWqrlG4RnVFtUAfs8-rd5fnXPpbFj30JcRhoivO-eKurFZxuKvnxP_J-3uepHuclGrndAroK4QqFPJeSY_K73I-U_3gE_9CxXzv2tTj_0LFXNfPpUUwl0JAyTaEv_4JSNg0qaSonV67Ur-ku5qcDnpN_WEOJZk93uYpvbySgAtyibWoJfwFwtpNE</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>AghaKouchak, Amir</creator><creator>Nasrollahi, Nasrin</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TG</scope><scope>H96</scope><scope>KL.</scope></search><sort><creationdate>20100401</creationdate><title>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</title><author>AghaKouchak, Amir ; Nasrollahi, Nasrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Environment</topic><topic>Exact sciences and technology</topic><topic>Extreme rainfall</topic><topic>Extreme value index</topic><topic>Extreme weather</topic><topic>Generalized Pareto Distribution</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Parameter estimation</topic><topic>Precipitation</topic><topic>Rainfall</topic><topic>Rainfall measurement</topic><topic>Risk assessment</topic><topic>Semi-parametric and parametric estimators</topic><topic>Studies</topic><topic>Time series</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AghaKouchak, Amir</creatorcontrib><creatorcontrib>Nasrollahi, Nasrin</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AghaKouchak, Amir</au><au>Nasrollahi, Nasrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>24</volume><issue>6</issue><spage>1229</spage><epage>1249</epage><pages>1229-1249</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><coden>WRMAEJ</coden><abstract>Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s11269-009-9493-3</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2010-04, Vol.24 (6), p.1229-1249
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_miscellaneous_746210945
source ABI/INFORM Global; Springer Nature
subjects Atmospheric Sciences
Civil Engineering
Climate change
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Environment
Exact sciences and technology
Extreme rainfall
Extreme value index
Extreme weather
Generalized Pareto Distribution
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrologic data
Hydrology
Hydrology. Hydrogeology
Hydrology/Water Resources
Parameter estimation
Precipitation
Rainfall
Rainfall measurement
Risk assessment
Semi-parametric and parametric estimators
Studies
Time series
Water resources
Water resources management
title Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-parametric%20and%20Parametric%20Inference%20of%20Extreme%20Value%20Models%20for%20Rainfall%20Data&rft.jtitle=Water%20resources%20management&rft.au=AghaKouchak,%20Amir&rft.date=2010-04-01&rft.volume=24&rft.issue=6&rft.spage=1229&rft.epage=1249&rft.pages=1229-1249&rft.issn=0920-4741&rft.eissn=1573-1650&rft.coden=WRMAEJ&rft_id=info:doi/10.1007/s11269-009-9493-3&rft_dat=%3Cproquest_cross%3E1987317271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216288019&rft_id=info:pmid/&rfr_iscdi=true