Loading…
Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of ext...
Saved in:
Published in: | Water resources management 2010-04, Vol.24 (6), p.1229-1249 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3 |
container_end_page | 1249 |
container_issue | 6 |
container_start_page | 1229 |
container_title | Water resources management |
container_volume | 24 |
creator | AghaKouchak, Amir Nasrollahi, Nasrin |
description | Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application. |
doi_str_mv | 10.1007/s11269-009-9493-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746210945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987317271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</originalsourceid><addsrcrecordid>eNp9kF1rFTEQhoMoeKz-AK8MgngVnUmyycmltLUttLS01tswm03Klv04JntA_70pWyx40avJkOd9GF7G3iN8QQD7tSBK4wSAE047JdQLtsHGKoGmgZdsA06C0Fbja_amlHuAmnKwYdc3cezFjjKNccl94DR1_OppPZtSzHEKkc-JH_9echwj_0nDPvKLuYtD4WnO_Jr6KdEw8CNa6C17Vd8lvnucB-z2-_GPw1NxfnlydvjtXAQNuAgZu051ymHbdc5ItLI1SW-NpQBSI6VWYlRBN9F0ltoWFWqrlG4RnVFtUAfs8-rd5fnXPpbFj30JcRhoivO-eKurFZxuKvnxP_J-3uepHuclGrndAroK4QqFPJeSY_K73I-U_3gE_9CxXzv2tTj_0LFXNfPpUUwl0JAyTaEv_4JSNg0qaSonV67Ur-ku5qcDnpN_WEOJZk93uYpvbySgAtyibWoJfwFwtpNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216288019</pqid></control><display><type>article</type><title>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>AghaKouchak, Amir ; Nasrollahi, Nasrin</creator><creatorcontrib>AghaKouchak, Amir ; Nasrollahi, Nasrin</creatorcontrib><description>Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-009-9493-3</identifier><identifier>CODEN: WRMAEJ</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Atmospheric Sciences ; Civil Engineering ; Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Environment ; Exact sciences and technology ; Extreme rainfall ; Extreme value index ; Extreme weather ; Generalized Pareto Distribution ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrologic data ; Hydrology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Parameter estimation ; Precipitation ; Rainfall ; Rainfall measurement ; Risk assessment ; Semi-parametric and parametric estimators ; Studies ; Time series ; Water resources ; Water resources management</subject><ispartof>Water resources management, 2010-04, Vol.24 (6), p.1229-1249</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</citedby><cites>FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/216288019/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/216288019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22551326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AghaKouchak, Amir</creatorcontrib><creatorcontrib>Nasrollahi, Nasrin</creatorcontrib><title>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.</description><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Environment</subject><subject>Exact sciences and technology</subject><subject>Extreme rainfall</subject><subject>Extreme value index</subject><subject>Extreme weather</subject><subject>Generalized Pareto Distribution</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Parameter estimation</subject><subject>Precipitation</subject><subject>Rainfall</subject><subject>Rainfall measurement</subject><subject>Risk assessment</subject><subject>Semi-parametric and parametric estimators</subject><subject>Studies</subject><subject>Time series</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kF1rFTEQhoMoeKz-AK8MgngVnUmyycmltLUttLS01tswm03Klv04JntA_70pWyx40avJkOd9GF7G3iN8QQD7tSBK4wSAE047JdQLtsHGKoGmgZdsA06C0Fbja_amlHuAmnKwYdc3cezFjjKNccl94DR1_OppPZtSzHEKkc-JH_9echwj_0nDPvKLuYtD4WnO_Jr6KdEw8CNa6C17Vd8lvnucB-z2-_GPw1NxfnlydvjtXAQNuAgZu051ymHbdc5ItLI1SW-NpQBSI6VWYlRBN9F0ltoWFWqrlG4RnVFtUAfs8-rd5fnXPpbFj30JcRhoivO-eKurFZxuKvnxP_J-3uepHuclGrndAroK4QqFPJeSY_K73I-U_3gE_9CxXzv2tTj_0LFXNfPpUUwl0JAyTaEv_4JSNg0qaSonV67Ur-ku5qcDnpN_WEOJZk93uYpvbySgAtyibWoJfwFwtpNE</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>AghaKouchak, Amir</creator><creator>Nasrollahi, Nasrin</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TG</scope><scope>H96</scope><scope>KL.</scope></search><sort><creationdate>20100401</creationdate><title>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</title><author>AghaKouchak, Amir ; Nasrollahi, Nasrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Environment</topic><topic>Exact sciences and technology</topic><topic>Extreme rainfall</topic><topic>Extreme value index</topic><topic>Extreme weather</topic><topic>Generalized Pareto Distribution</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Parameter estimation</topic><topic>Precipitation</topic><topic>Rainfall</topic><topic>Rainfall measurement</topic><topic>Risk assessment</topic><topic>Semi-parametric and parametric estimators</topic><topic>Studies</topic><topic>Time series</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AghaKouchak, Amir</creatorcontrib><creatorcontrib>Nasrollahi, Nasrin</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AghaKouchak, Amir</au><au>Nasrollahi, Nasrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>24</volume><issue>6</issue><spage>1229</spage><epage>1249</epage><pages>1229-1249</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><coden>WRMAEJ</coden><abstract>Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s11269-009-9493-3</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4741 |
ispartof | Water resources management, 2010-04, Vol.24 (6), p.1229-1249 |
issn | 0920-4741 1573-1650 |
language | eng |
recordid | cdi_proquest_miscellaneous_746210945 |
source | ABI/INFORM Global; Springer Nature |
subjects | Atmospheric Sciences Civil Engineering Climate change Earth and Environmental Science Earth Sciences Earth, ocean, space Environment Exact sciences and technology Extreme rainfall Extreme value index Extreme weather Generalized Pareto Distribution Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrologic data Hydrology Hydrology. Hydrogeology Hydrology/Water Resources Parameter estimation Precipitation Rainfall Rainfall measurement Risk assessment Semi-parametric and parametric estimators Studies Time series Water resources Water resources management |
title | Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-parametric%20and%20Parametric%20Inference%20of%20Extreme%20Value%20Models%20for%20Rainfall%20Data&rft.jtitle=Water%20resources%20management&rft.au=AghaKouchak,%20Amir&rft.date=2010-04-01&rft.volume=24&rft.issue=6&rft.spage=1229&rft.epage=1249&rft.pages=1229-1249&rft.issn=0920-4741&rft.eissn=1573-1650&rft.coden=WRMAEJ&rft_id=info:doi/10.1007/s11269-009-9493-3&rft_dat=%3Cproquest_cross%3E1987317271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-2edd3d391bdd962172b6f4867ac0241afb21e3c45e6d7abb13147334b11963bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216288019&rft_id=info:pmid/&rfr_iscdi=true |