Loading…

Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases

Two-component signal transduction (TCST) is the most prevalent mechanism employed by microbes to sense and respond to environmental changes. It is characterized by the signal-induced transfer of phosphate from a sensor histidine kinase (HK) to a response regulator (RR), resulting in a cellular respo...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2010-02, Vol.75 (3), p.547-566
Main Authors: Buelow, Daelynn R, Raivio, Tracy L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-component signal transduction (TCST) is the most prevalent mechanism employed by microbes to sense and respond to environmental changes. It is characterized by the signal-induced transfer of phosphate from a sensor histidine kinase (HK) to a response regulator (RR), resulting in a cellular response. An emerging theme in the field of TCST signalling is the discovery of auxiliary factors, distinct from the HK and RR, which are capable of influencing phosphotransfer. One group of TCST auxiliary proteins accomplishes this task by acting on HKs. Auxiliary regulators of HKs are widespread and have been identified in all cellular compartments, where they can influence HK activity through interactions with the sensing, transmembrane or enzymatic domains of the HK. The effects of an auxiliary regulator are controlled by its regulated expression, modification and/or through ligand binding. Ultimately, auxiliary regulators can connect a given TCST system to other regulatory networks in the cell or result in regulation of the TCST system in response to an expanded range of stimuli. The studies highlighted in this review draw attention to an emerging view of bacterial TCST systems as core signalling units upon which auxiliary factors act.
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2009.06982.x