Loading…

A distributed dislocation stress analysis for crazes and plastic zones at crack tips

A distributed dislocation method is developed to obtain analytically the applied stress as well as the surface stress profile along narrow plastic zones at the tip of a crack in a homogeneous tensile stress field. Replacing the plastic zone by a continuous array of mathematical dislocations, the str...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 1982-07, Vol.17 (7), p.2013-2026
Main Authors: WANG, W.C.V, KRAMER, E.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A distributed dislocation method is developed to obtain analytically the applied stress as well as the surface stress profile along narrow plastic zones at the tip of a crack in a homogeneous tensile stress field. Replacing the plastic zone by a continuous array of mathematical dislocations, the stress field solution of this mixed boundary value problem (the displacement profile of the plastic zone is fixed while the tensile stresses are zero across the crack) can be solved. A computer program based on the stress field solution has been constructed and tested using the analytical results of the Dugdale model. The method is then applied to determining the surface stress profiles of crazes and plane-stress plastic deformation zones grown from electron microprobe cracks in polystyrene and polycarbonate respectively. The necessary craze and zone surface displacement profiles are determined by quantitative analysis of transmission electron micrographs.
ISSN:0022-2461
1573-4803
DOI:10.1007/BF00540419