Loading…

Differential effects of citalopram and reboxetine on cortical Glx measured with proton MR spectroscopy

The pharmacological effects of monoamine potentiating antidepressants are likely to be expressed ultimately on cortical pyramidal neurones that use glutamate as a neurotransmitter. However, there are few data on the effects of antidepressant treatment on cortical glutamate levels in humans. The aim...

Full description

Saved in:
Bibliographic Details
Published in:Journal of psychopharmacology (Oxford) 2008-07, Vol.22 (5), p.473-476
Main Authors: Taylor, M., Murphy, SE, Selvaraj, S., Wylezinkska, M., Jezzard, P., Cowen, PJ, Evans, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pharmacological effects of monoamine potentiating antidepressants are likely to be expressed ultimately on cortical pyramidal neurones that use glutamate as a neurotransmitter. However, there are few data on the effects of antidepressant treatment on cortical glutamate levels in humans. The aim of the present study was to use proton magnetic resonance spectroscopy (MRS) to assess the effects of short-term administration of the selective serotonin re-uptake inhibitor, citalopram and the selective noradrenaline re-uptake inhibitor, reboxetine, on a composite measure of glutamate and glutamine (Glx) in occipital cortex in healthy volunteers using a parallel group, placebo-controlled design. We found that relative both to placebo and reboxetine, seven days treatment with citalopram significantly increased cortical Glx. Our data suggest that short-term treatment with citalopram, but not reboxetine, increases occipital Glx in healthy subjects. Further studies are needed to find out if similar effects occur in anterior brain regions and whether they reflect changes in glutamate or glutamine or both.
ISSN:0269-8811
1461-7285
DOI:10.1177/0269881107081510