Loading…
Thermal Insulation Properties of Biodegradable, Cellulosic-Based Nonwoven Composites for Automotive Application
Moldable, cellulosic-based nonwoven composites with excellent thermal insulation properties were fabricated from kenaf, jute, flax, and waste cotton using recycled polyester and substandard polypropylene. The composites of these fibers have excellent shape stability and high tensile and flexural pro...
Saved in:
Published in: | Journal of industrial textiles 2002-04, Vol.31 (4), p.283-296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Moldable, cellulosic-based nonwoven composites with excellent thermal insulation properties were fabricated from kenaf, jute, flax, and waste cotton using recycled polyester and substandard polypropylene. The composites of these fibers have excellent shape stability and high tensile and flexural properties coupled with economic and environmental benefits. Four different designs incorporating different cellulosic fibers, manufacturing techniques and various ratios of vegetable–synthetic fibers were manufactured on laboratory-scale equipment. A Steady-State Heat Flow meter was used for measurement of thermal conductivity and thermal transmittance of samples of composites. The data show that thermal insulation properties of the cellulosic-based nonwoven composites vary significantly, depending on the type of the cellulosic fibers, the ratio of cellulosic fibers to synthetic fibers, and the resulting density of the composite. |
---|---|
ISSN: | 1528-0837 1530-8057 |
DOI: | 10.1106/152808302029087 |