Loading…

Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output

Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a prom...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2005-05, Vol.90 (4), p.452-461
Main Authors: Bauwens, Céline, Yin, Ting, Dang, Stephen, Peerani, Raheem, Zandstra, Peter W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3
cites cdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3
container_end_page 461
container_issue 4
container_start_page 452
container_title Biotechnology and bioengineering
container_volume 90
creator Bauwens, Céline
Yin, Ting
Dang, Stephen
Peerani, Raheem
Zandstra, Peter W.
description Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.20445
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746274841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>6221881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EokvhwAsgXwBxSOs_sZ1wgy1dKlXtgaI9Wo4zAUMSL7ZTmifhdfF2t1Qc4GCNR_p982nmQ-g5JUeUEHbcuHTESFmKB2hBSa0KwmryEC0IIbLgomYH6EmM33KrKikfowMqlKrqSi7QrxO4ht5vBhgT9h02eAOhm6LzI-6gxY3zAYxNPuAuPxiaMPvRWRwTDNhC3xctBHedUWtC6_wwezsnwF9ghGBSnvMWX97MuS0GaJ1JmYTxqxkt3Hn-LfRT2kzpKXrUmT7Cs309RJ9PP1wtPxbnl6uz5bvzwgomRcEayziHtoZGGQq2a0lViVpJarmtGkZZWynWkaoE0kqw-WuZYdwyaBtKGn6IXu_mboL_MUFMenBxu5YZwU9Rq1IyVVYlzeSr_5JSqVqKkmfwzQ60wccYoNOb4AYTZk2J3ualc176Nq_MvtgPnZp8nntyH1AGXu4BE63pu5AP5-I9J5VQTGxNj3fcT9fD_G9H_f7s6s662ClcjvLmj8KE73kVroReX6z0xae1XJ8sV5rz30jcv6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67796543</pqid></control><display><type>article</type><title>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bauwens, Céline ; Yin, Ting ; Dang, Stephen ; Peerani, Raheem ; Zandstra, Peter W.</creator><creatorcontrib>Bauwens, Céline ; Yin, Ting ; Dang, Stephen ; Peerani, Raheem ; Zandstra, Peter W.</creatorcontrib><description>Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20445</identifier><identifier>PMID: 15778986</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; bioreactor design ; Bioreactors ; Biotechnology ; cardiomyocytes ; Cell culture ; Cell Differentiation - drug effects ; Dissolved oxygen ; Embryo, Mammalian - cytology ; Embryos ; Encapsulation ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Heart diseases ; hydrogels ; Hypoxia ; Industrial applications and implications. Economical aspects ; Methods. Procedures. Technologies ; Mice ; Miscellaneous ; Myocardium ; Myocytes, Cardiac - cytology ; oxygen ; Oxygen - pharmacology ; Oxygen tension ; Perfusion ; Q1 ; stem cells ; Stem Cells - chemistry ; Stem Cells - cytology ; tissue engineering ; Various methods and equipments</subject><ispartof>Biotechnology and bioengineering, 2005-05, Vol.90 (4), p.452-461</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>(c) 2005 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</citedby><cites>FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16757253$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15778986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauwens, Céline</creatorcontrib><creatorcontrib>Yin, Ting</creatorcontrib><creatorcontrib>Dang, Stephen</creatorcontrib><creatorcontrib>Peerani, Raheem</creatorcontrib><creatorcontrib>Zandstra, Peter W.</creatorcontrib><title>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>bioreactor design</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>cardiomyocytes</subject><subject>Cell culture</subject><subject>Cell Differentiation - drug effects</subject><subject>Dissolved oxygen</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryos</subject><subject>Encapsulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Heart diseases</subject><subject>hydrogels</subject><subject>Hypoxia</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Methods. Procedures. Technologies</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - cytology</subject><subject>oxygen</subject><subject>Oxygen - pharmacology</subject><subject>Oxygen tension</subject><subject>Perfusion</subject><subject>Q1</subject><subject>stem cells</subject><subject>Stem Cells - chemistry</subject><subject>Stem Cells - cytology</subject><subject>tissue engineering</subject><subject>Various methods and equipments</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EokvhwAsgXwBxSOs_sZ1wgy1dKlXtgaI9Wo4zAUMSL7ZTmifhdfF2t1Qc4GCNR_p982nmQ-g5JUeUEHbcuHTESFmKB2hBSa0KwmryEC0IIbLgomYH6EmM33KrKikfowMqlKrqSi7QrxO4ht5vBhgT9h02eAOhm6LzI-6gxY3zAYxNPuAuPxiaMPvRWRwTDNhC3xctBHedUWtC6_wwezsnwF9ghGBSnvMWX97MuS0GaJ1JmYTxqxkt3Hn-LfRT2kzpKXrUmT7Cs309RJ9PP1wtPxbnl6uz5bvzwgomRcEayziHtoZGGQq2a0lViVpJarmtGkZZWynWkaoE0kqw-WuZYdwyaBtKGn6IXu_mboL_MUFMenBxu5YZwU9Rq1IyVVYlzeSr_5JSqVqKkmfwzQ60wccYoNOb4AYTZk2J3ualc176Nq_MvtgPnZp8nntyH1AGXu4BE63pu5AP5-I9J5VQTGxNj3fcT9fD_G9H_f7s6s662ClcjvLmj8KE73kVroReX6z0xae1XJ8sV5rz30jcv6U</recordid><startdate>20050520</startdate><enddate>20050520</enddate><creator>Bauwens, Céline</creator><creator>Yin, Ting</creator><creator>Dang, Stephen</creator><creator>Peerani, Raheem</creator><creator>Zandstra, Peter W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050520</creationdate><title>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</title><author>Bauwens, Céline ; Yin, Ting ; Dang, Stephen ; Peerani, Raheem ; Zandstra, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>bioreactor design</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>cardiomyocytes</topic><topic>Cell culture</topic><topic>Cell Differentiation - drug effects</topic><topic>Dissolved oxygen</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryos</topic><topic>Encapsulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Heart diseases</topic><topic>hydrogels</topic><topic>Hypoxia</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Methods. Procedures. Technologies</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - cytology</topic><topic>oxygen</topic><topic>Oxygen - pharmacology</topic><topic>Oxygen tension</topic><topic>Perfusion</topic><topic>Q1</topic><topic>stem cells</topic><topic>Stem Cells - chemistry</topic><topic>Stem Cells - cytology</topic><topic>tissue engineering</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauwens, Céline</creatorcontrib><creatorcontrib>Yin, Ting</creatorcontrib><creatorcontrib>Dang, Stephen</creatorcontrib><creatorcontrib>Peerani, Raheem</creatorcontrib><creatorcontrib>Zandstra, Peter W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauwens, Céline</au><au>Yin, Ting</au><au>Dang, Stephen</au><au>Peerani, Raheem</au><au>Zandstra, Peter W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2005-05-20</date><risdate>2005</risdate><volume>90</volume><issue>4</issue><spage>452</spage><epage>461</epage><pages>452-461</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15778986</pmid><doi>10.1002/bit.20445</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2005-05, Vol.90 (4), p.452-461
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_746274841
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Biological and medical sciences
bioreactor design
Bioreactors
Biotechnology
cardiomyocytes
Cell culture
Cell Differentiation - drug effects
Dissolved oxygen
Embryo, Mammalian - cytology
Embryos
Encapsulation
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Heart diseases
hydrogels
Hypoxia
Industrial applications and implications. Economical aspects
Methods. Procedures. Technologies
Mice
Miscellaneous
Myocardium
Myocytes, Cardiac - cytology
oxygen
Oxygen - pharmacology
Oxygen tension
Perfusion
Q1
stem cells
Stem Cells - chemistry
Stem Cells - cytology
tissue engineering
Various methods and equipments
title Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20perfusion%20fed%20bioreactor%20for%20embryonic%20stem%20cell-derived%20cardiomyocyte%20generation:%20Oxygen-mediated%20enhancement%20of%20cardiomyocyte%20output&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Bauwens,%20C%C3%A9line&rft.date=2005-05-20&rft.volume=90&rft.issue=4&rft.spage=452&rft.epage=461&rft.pages=452-461&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20445&rft_dat=%3Cproquest_cross%3E6221881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67796543&rft_id=info:pmid/15778986&rfr_iscdi=true