Loading…
Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output
Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a prom...
Saved in:
Published in: | Biotechnology and bioengineering 2005-05, Vol.90 (4), p.452-461 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3 |
container_end_page | 461 |
container_issue | 4 |
container_start_page | 452 |
container_title | Biotechnology and bioengineering |
container_volume | 90 |
creator | Bauwens, Céline Yin, Ting Dang, Stephen Peerani, Raheem Zandstra, Peter W. |
description | Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.20445 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746274841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>6221881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EokvhwAsgXwBxSOs_sZ1wgy1dKlXtgaI9Wo4zAUMSL7ZTmifhdfF2t1Qc4GCNR_p982nmQ-g5JUeUEHbcuHTESFmKB2hBSa0KwmryEC0IIbLgomYH6EmM33KrKikfowMqlKrqSi7QrxO4ht5vBhgT9h02eAOhm6LzI-6gxY3zAYxNPuAuPxiaMPvRWRwTDNhC3xctBHedUWtC6_wwezsnwF9ghGBSnvMWX97MuS0GaJ1JmYTxqxkt3Hn-LfRT2kzpKXrUmT7Cs309RJ9PP1wtPxbnl6uz5bvzwgomRcEayziHtoZGGQq2a0lViVpJarmtGkZZWynWkaoE0kqw-WuZYdwyaBtKGn6IXu_mboL_MUFMenBxu5YZwU9Rq1IyVVYlzeSr_5JSqVqKkmfwzQ60wccYoNOb4AYTZk2J3ualc176Nq_MvtgPnZp8nntyH1AGXu4BE63pu5AP5-I9J5VQTGxNj3fcT9fD_G9H_f7s6s662ClcjvLmj8KE73kVroReX6z0xae1XJ8sV5rz30jcv6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67796543</pqid></control><display><type>article</type><title>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bauwens, Céline ; Yin, Ting ; Dang, Stephen ; Peerani, Raheem ; Zandstra, Peter W.</creator><creatorcontrib>Bauwens, Céline ; Yin, Ting ; Dang, Stephen ; Peerani, Raheem ; Zandstra, Peter W.</creatorcontrib><description>Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20445</identifier><identifier>PMID: 15778986</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; bioreactor design ; Bioreactors ; Biotechnology ; cardiomyocytes ; Cell culture ; Cell Differentiation - drug effects ; Dissolved oxygen ; Embryo, Mammalian - cytology ; Embryos ; Encapsulation ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Heart diseases ; hydrogels ; Hypoxia ; Industrial applications and implications. Economical aspects ; Methods. Procedures. Technologies ; Mice ; Miscellaneous ; Myocardium ; Myocytes, Cardiac - cytology ; oxygen ; Oxygen - pharmacology ; Oxygen tension ; Perfusion ; Q1 ; stem cells ; Stem Cells - chemistry ; Stem Cells - cytology ; tissue engineering ; Various methods and equipments</subject><ispartof>Biotechnology and bioengineering, 2005-05, Vol.90 (4), p.452-461</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>(c) 2005 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</citedby><cites>FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16757253$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15778986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauwens, Céline</creatorcontrib><creatorcontrib>Yin, Ting</creatorcontrib><creatorcontrib>Dang, Stephen</creatorcontrib><creatorcontrib>Peerani, Raheem</creatorcontrib><creatorcontrib>Zandstra, Peter W.</creatorcontrib><title>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>bioreactor design</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>cardiomyocytes</subject><subject>Cell culture</subject><subject>Cell Differentiation - drug effects</subject><subject>Dissolved oxygen</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryos</subject><subject>Encapsulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Heart diseases</subject><subject>hydrogels</subject><subject>Hypoxia</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Methods. Procedures. Technologies</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - cytology</subject><subject>oxygen</subject><subject>Oxygen - pharmacology</subject><subject>Oxygen tension</subject><subject>Perfusion</subject><subject>Q1</subject><subject>stem cells</subject><subject>Stem Cells - chemistry</subject><subject>Stem Cells - cytology</subject><subject>tissue engineering</subject><subject>Various methods and equipments</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EokvhwAsgXwBxSOs_sZ1wgy1dKlXtgaI9Wo4zAUMSL7ZTmifhdfF2t1Qc4GCNR_p982nmQ-g5JUeUEHbcuHTESFmKB2hBSa0KwmryEC0IIbLgomYH6EmM33KrKikfowMqlKrqSi7QrxO4ht5vBhgT9h02eAOhm6LzI-6gxY3zAYxNPuAuPxiaMPvRWRwTDNhC3xctBHedUWtC6_wwezsnwF9ghGBSnvMWX97MuS0GaJ1JmYTxqxkt3Hn-LfRT2kzpKXrUmT7Cs309RJ9PP1wtPxbnl6uz5bvzwgomRcEayziHtoZGGQq2a0lViVpJarmtGkZZWynWkaoE0kqw-WuZYdwyaBtKGn6IXu_mboL_MUFMenBxu5YZwU9Rq1IyVVYlzeSr_5JSqVqKkmfwzQ60wccYoNOb4AYTZk2J3ualc176Nq_MvtgPnZp8nntyH1AGXu4BE63pu5AP5-I9J5VQTGxNj3fcT9fD_G9H_f7s6s662ClcjvLmj8KE73kVroReX6z0xae1XJ8sV5rz30jcv6U</recordid><startdate>20050520</startdate><enddate>20050520</enddate><creator>Bauwens, Céline</creator><creator>Yin, Ting</creator><creator>Dang, Stephen</creator><creator>Peerani, Raheem</creator><creator>Zandstra, Peter W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050520</creationdate><title>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</title><author>Bauwens, Céline ; Yin, Ting ; Dang, Stephen ; Peerani, Raheem ; Zandstra, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>bioreactor design</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>cardiomyocytes</topic><topic>Cell culture</topic><topic>Cell Differentiation - drug effects</topic><topic>Dissolved oxygen</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryos</topic><topic>Encapsulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Heart diseases</topic><topic>hydrogels</topic><topic>Hypoxia</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Methods. Procedures. Technologies</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - cytology</topic><topic>oxygen</topic><topic>Oxygen - pharmacology</topic><topic>Oxygen tension</topic><topic>Perfusion</topic><topic>Q1</topic><topic>stem cells</topic><topic>Stem Cells - chemistry</topic><topic>Stem Cells - cytology</topic><topic>tissue engineering</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauwens, Céline</creatorcontrib><creatorcontrib>Yin, Ting</creatorcontrib><creatorcontrib>Dang, Stephen</creatorcontrib><creatorcontrib>Peerani, Raheem</creatorcontrib><creatorcontrib>Zandstra, Peter W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauwens, Céline</au><au>Yin, Ting</au><au>Dang, Stephen</au><au>Peerani, Raheem</au><au>Zandstra, Peter W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2005-05-20</date><risdate>2005</risdate><volume>90</volume><issue>4</issue><spage>452</spage><epage>461</epage><pages>452-461</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single‐step bioprocess for ES cell‐derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 ± 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell‐derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell‐derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield. © 2005 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15778986</pmid><doi>10.1002/bit.20445</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2005-05, Vol.90 (4), p.452-461 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_746274841 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Biological and medical sciences bioreactor design Bioreactors Biotechnology cardiomyocytes Cell culture Cell Differentiation - drug effects Dissolved oxygen Embryo, Mammalian - cytology Embryos Encapsulation Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry Heart diseases hydrogels Hypoxia Industrial applications and implications. Economical aspects Methods. Procedures. Technologies Mice Miscellaneous Myocardium Myocytes, Cardiac - cytology oxygen Oxygen - pharmacology Oxygen tension Perfusion Q1 stem cells Stem Cells - chemistry Stem Cells - cytology tissue engineering Various methods and equipments |
title | Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20perfusion%20fed%20bioreactor%20for%20embryonic%20stem%20cell-derived%20cardiomyocyte%20generation:%20Oxygen-mediated%20enhancement%20of%20cardiomyocyte%20output&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Bauwens,%20C%C3%A9line&rft.date=2005-05-20&rft.volume=90&rft.issue=4&rft.spage=452&rft.epage=461&rft.pages=452-461&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20445&rft_dat=%3Cproquest_cross%3E6221881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5265-2bc233ed9eb7a1ecfd08859761c3c8b212d872f084e0d6ec2f0c2a23c2edb10b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67796543&rft_id=info:pmid/15778986&rfr_iscdi=true |