Loading…

Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus

We have previously reported that caffeine prevented sleep deprivation‐induced impairment of long‐term potentiation (LTP) of area CA1 as well as hippocampus‐dependent learning and memory performance in the radial arm water maze. In this report we examined the impact of long‐term (4‐week) caffeine con...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2010-04, Vol.31 (8), p.1368-1376
Main Authors: Alhaider, Ibrahim A., Aleisa, Abdulaziz M., Tran, Trinh T., Alkadhi, Karim A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have previously reported that caffeine prevented sleep deprivation‐induced impairment of long‐term potentiation (LTP) of area CA1 as well as hippocampus‐dependent learning and memory performance in the radial arm water maze. In this report we examined the impact of long‐term (4‐week) caffeine consumption (0.3 g/L in drinking water) on synaptic plasticity (Alhaider et al., 2010) deficit in the dentate gyrus (DG) area of acutely sleep‐deprived rats. The sleep deprivation and caffeine/sleep deprivation groups were sleep‐deprived for 24 h by using the columns‐in‐water technique. We tested the effect of caffeine and/or sleep deprivation on LTP and measured the basal levels as well as stimulated levels of LTP‐related molecules in the DG. The results showed that chronic caffeine administration prevented the impairment of early‐phase LTP (E‐LTP) in the DG of sleep‐deprived rats. Additionally, chronic caffeine treatment prevented the sleep deprivation‐associated decreases in the basal levels of the phosphorylated calcium/calmodulin‐dependent protein kinase II (P‐CaMKII) and brain derived neurotrophic factor (BDNF) as well as in the stimulated levels of P‐CaMKII in the DG area. The results suggest that chronic use of caffeine prevented anomalous changes in the basal levels of P‐CaMKII and BDNF associated with sleep deprivation and as a result contributes to the revival of LTP in the DG region.
ISSN:0953-816X
1460-9568
DOI:10.1111/j.1460-9568.2010.07175.x