Loading…

A study of brake disc modal behaviour during squeal generation using high-speed electronic speckle pattern interferometry and near-field sound pressure measurements

Abstract The out-of-plane surface vibration of a brake disc during naturally excited squeal has been investigated using a combination of high-speed electronic speckle pattern interferometry (ESPI) and near-field sound pressure measurements. Both techniques provide visualization and quantification of...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2000-01, Vol.214 (3), p.285-296
Main Authors: Reeves, M, Taylor, N, Edwards, C, Williams, D, Buckberry, C. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The out-of-plane surface vibration of a brake disc during naturally excited squeal has been investigated using a combination of high-speed electronic speckle pattern interferometry (ESPI) and near-field sound pressure measurements. Both techniques provide visualization and quantification of the time-resolved surface velocity. A mathematical description of disc brake squeal modal behaviour is proposed that predicts accurately all of the experimentally observed interferometry and sound field measurements. The complex mode description proposed here is in agreement with that proposed by others for drum brake squeal. This assumes that two identical diametral modes are excited simultaneously, identical except for a spatial and temporal phase shift. The use of a near-field microphone array provided a convenient multipoint, non-contacting vibration probe which may find use in the study of other vibrations characterized by high surface amplitudes and efficient sound radiation. The high-speed ESPI provided a real-time visualization of surface deformation analogous to double- pulsed holographic interferometry, with the benefit of giving a true time series of the surface deformation during a single vibration cycle.
ISSN:0954-4070
2041-2991
DOI:10.1243/0954407001527420