Loading…

DNA Translocation through Graphene Nanopores

We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1−5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditi...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2010-08, Vol.10 (8), p.2915-2921
Main Authors: Merchant, Christopher A, Healy, Ken, Wanunu, Meni, Ray, Vishva, Peterman, Neil, Bartel, John, Fischbein, Michael D, Venta, Kimberly, Luo, Zhengtang, Johnson, A. T. Charlie, Drndić, Marija
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a450t-b260bf6e2a4910529836748b15fea897c61f76e8c1a0817b7b65b1c8f06ddf7e3
cites cdi_FETCH-LOGICAL-a450t-b260bf6e2a4910529836748b15fea897c61f76e8c1a0817b7b65b1c8f06ddf7e3
container_end_page 2921
container_issue 8
container_start_page 2915
container_title Nano letters
container_volume 10
creator Merchant, Christopher A
Healy, Ken
Wanunu, Meni
Ray, Vishva
Peterman, Neil
Bartel, John
Fischbein, Michael D
Venta, Kimberly
Luo, Zhengtang
Johnson, A. T. Charlie
Drndić, Marija
description We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1−5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.
doi_str_mv 10.1021/nl101046t
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748936887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748936887</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-b260bf6e2a4910529836748b15fea897c61f76e8c1a0817b7b65b1c8f06ddf7e3</originalsourceid><addsrcrecordid>eNpt0EFLwzAYxvEgipvTg19AehERrL5v0ybpcUydwpiXeQ5plriOrqlJe_Dbr7K5XTwlhB9P4E_INcIjQoJPdYWAkLL2hAwxoxCzPE9OD3eRDshFCGsAyGkG52SQQP_KIB2Sh-f5OFp4VYfKadWWro7alXfd1yqaetWsTG2iuapd47wJl-TMqiqYq_05Ip-vL4vJWzz7mL5PxrNYpRm0cZEwKCwziUpzhCzJBWU8FQVm1iiRc83QcmaERgUCecELlhWohQW2XFpu6Ijc7XYb7747E1q5KYM2VaVq47og-7GcMiF4L-93UnsXgjdWNr7cKP8jEeRvG3lo09ub_WpXbMzyIP9i9OB2D1TQqrJ9FV2Go6MIVFA8OqWDXLvO132Mfz7cAuE-de0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748936887</pqid></control><display><type>article</type><title>DNA Translocation through Graphene Nanopores</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Merchant, Christopher A ; Healy, Ken ; Wanunu, Meni ; Ray, Vishva ; Peterman, Neil ; Bartel, John ; Fischbein, Michael D ; Venta, Kimberly ; Luo, Zhengtang ; Johnson, A. T. Charlie ; Drndić, Marija</creator><creatorcontrib>Merchant, Christopher A ; Healy, Ken ; Wanunu, Meni ; Ray, Vishva ; Peterman, Neil ; Bartel, John ; Fischbein, Michael D ; Venta, Kimberly ; Luo, Zhengtang ; Johnson, A. T. Charlie ; Drndić, Marija</creatorcontrib><description>We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1−5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl101046t</identifier><identifier>PMID: 20698604</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological Transport ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; DNA - chemistry ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Membranes, Artificial ; Nanostructures ; Physics ; Specific materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2010-08, Vol.10 (8), p.2915-2921</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-b260bf6e2a4910529836748b15fea897c61f76e8c1a0817b7b65b1c8f06ddf7e3</citedby><cites>FETCH-LOGICAL-a450t-b260bf6e2a4910529836748b15fea897c61f76e8c1a0817b7b65b1c8f06ddf7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23103831$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20698604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merchant, Christopher A</creatorcontrib><creatorcontrib>Healy, Ken</creatorcontrib><creatorcontrib>Wanunu, Meni</creatorcontrib><creatorcontrib>Ray, Vishva</creatorcontrib><creatorcontrib>Peterman, Neil</creatorcontrib><creatorcontrib>Bartel, John</creatorcontrib><creatorcontrib>Fischbein, Michael D</creatorcontrib><creatorcontrib>Venta, Kimberly</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Drndić, Marija</creatorcontrib><title>DNA Translocation through Graphene Nanopores</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1−5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.</description><subject>Biological Transport</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DNA - chemistry</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Membranes, Artificial</subject><subject>Nanostructures</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAYxvEgipvTg19AehERrL5v0ybpcUydwpiXeQ5plriOrqlJe_Dbr7K5XTwlhB9P4E_INcIjQoJPdYWAkLL2hAwxoxCzPE9OD3eRDshFCGsAyGkG52SQQP_KIB2Sh-f5OFp4VYfKadWWro7alXfd1yqaetWsTG2iuapd47wJl-TMqiqYq_05Ip-vL4vJWzz7mL5PxrNYpRm0cZEwKCwziUpzhCzJBWU8FQVm1iiRc83QcmaERgUCecELlhWohQW2XFpu6Ijc7XYb7747E1q5KYM2VaVq47og-7GcMiF4L-93UnsXgjdWNr7cKP8jEeRvG3lo09ub_WpXbMzyIP9i9OB2D1TQqrJ9FV2Go6MIVFA8OqWDXLvO132Mfz7cAuE-de0</recordid><startdate>20100811</startdate><enddate>20100811</enddate><creator>Merchant, Christopher A</creator><creator>Healy, Ken</creator><creator>Wanunu, Meni</creator><creator>Ray, Vishva</creator><creator>Peterman, Neil</creator><creator>Bartel, John</creator><creator>Fischbein, Michael D</creator><creator>Venta, Kimberly</creator><creator>Luo, Zhengtang</creator><creator>Johnson, A. T. Charlie</creator><creator>Drndić, Marija</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100811</creationdate><title>DNA Translocation through Graphene Nanopores</title><author>Merchant, Christopher A ; Healy, Ken ; Wanunu, Meni ; Ray, Vishva ; Peterman, Neil ; Bartel, John ; Fischbein, Michael D ; Venta, Kimberly ; Luo, Zhengtang ; Johnson, A. T. Charlie ; Drndić, Marija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-b260bf6e2a4910529836748b15fea897c61f76e8c1a0817b7b65b1c8f06ddf7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological Transport</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DNA - chemistry</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Membranes, Artificial</topic><topic>Nanostructures</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merchant, Christopher A</creatorcontrib><creatorcontrib>Healy, Ken</creatorcontrib><creatorcontrib>Wanunu, Meni</creatorcontrib><creatorcontrib>Ray, Vishva</creatorcontrib><creatorcontrib>Peterman, Neil</creatorcontrib><creatorcontrib>Bartel, John</creatorcontrib><creatorcontrib>Fischbein, Michael D</creatorcontrib><creatorcontrib>Venta, Kimberly</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Drndić, Marija</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merchant, Christopher A</au><au>Healy, Ken</au><au>Wanunu, Meni</au><au>Ray, Vishva</au><au>Peterman, Neil</au><au>Bartel, John</au><au>Fischbein, Michael D</au><au>Venta, Kimberly</au><au>Luo, Zhengtang</au><au>Johnson, A. T. Charlie</au><au>Drndić, Marija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA Translocation through Graphene Nanopores</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-08-11</date><risdate>2010</risdate><volume>10</volume><issue>8</issue><spage>2915</spage><epage>2921</epage><pages>2915-2921</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1−5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20698604</pmid><doi>10.1021/nl101046t</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-08, Vol.10 (8), p.2915-2921
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_748936887
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biological Transport
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
DNA - chemistry
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Membranes, Artificial
Nanostructures
Physics
Specific materials
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title DNA Translocation through Graphene Nanopores
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20Translocation%20through%20Graphene%20Nanopores&rft.jtitle=Nano%20letters&rft.au=Merchant,%20Christopher%20A&rft.date=2010-08-11&rft.volume=10&rft.issue=8&rft.spage=2915&rft.epage=2921&rft.pages=2915-2921&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl101046t&rft_dat=%3Cproquest_cross%3E748936887%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a450t-b260bf6e2a4910529836748b15fea897c61f76e8c1a0817b7b65b1c8f06ddf7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=748936887&rft_id=info:pmid/20698604&rfr_iscdi=true