Loading…
Cellular Localization of Clathridimine, an Antimicrobial 2-Aminoimidazole Alkaloid Produced by the Mediterranean Calcareous Sponge Clathrina clathrus
Chemical investigation of the Mediterranean calcareous sponge Clathrina clathrus led to the isolation of large amounts of a new 2-aminoimidazole alkaloid, named clathridimine (1), along with the known clathridine (2) and its zinc complex (3). The structure of the new metabolite was assigned by detai...
Saved in:
Published in: | Journal of natural products (Washington, D.C.) D.C.), 2010-07, Vol.73 (7), p.1277-1282 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemical investigation of the Mediterranean calcareous sponge Clathrina clathrus led to the isolation of large amounts of a new 2-aminoimidazole alkaloid, named clathridimine (1), along with the known clathridine (2) and its zinc complex (3). The structure of the new metabolite was assigned by detailed spectroscopic analysis. Clathridimine (1) displayed selective anti-Escherichia coli and anti-Candida albicans activities. Clathridine (2) showed only anti-Candida albicans activity, and its zinc complex (3) exhibited selective anti-Staphylococcus aureus activity. The isolation of analogues of 2-amino-imidazole derivatives from several Leucetta species from various sites in the Pacific Ocean and the Red Sea raises the question of their biosynthetic origin. Microscopic studies revealed abundant extracellular bacteria located in the mesohyl of the sponge, with two predominant morphotypes including spiral bacteria and long, narrow bacilli. Chemical analysis with HPLC/UV/ELSD profiles of sponge cells separated from bacteria by differential centrifugation and trypsinization of the sponge cell surface revealed that clathridine (2) was localized in the sponge cells. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/np100175x |