Loading…
Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation
Nitric oxide (NO) and B-type natriuretic peptide (BNP) are protective against ischemia–reperfusion injury as they increase intracellular cGMP level via activation of soluble (sGC) or particulate guanylate cyclases (pGC), respectively. The aim of the present study was to examine if the cGMP-elevating...
Saved in:
Published in: | Basic research in cardiology 2010-09, Vol.105 (5), p.643-650 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nitric oxide (NO) and B-type natriuretic peptide (BNP) are protective against ischemia–reperfusion injury as they increase intracellular cGMP level via activation of soluble (sGC) or particulate guanylate cyclases (pGC), respectively. The aim of the present study was to examine if the cGMP-elevating mediators, NO and BNP, share a common downstream signaling pathway via cGMP-dependent protein kinase (PKG) in cardiac cytoprotection. Neonatal rat cardiac myocytes in vitro were subjected to 2.5 h simulated ischemia (SI) followed by 2 h reoxygenation. Cell viability was tested by trypan blue exclusion assay. PKG activity of cardiac myocytes was assessed by phospholamban (PLB) phosphorylation determined by western blot. Cell death was 34 ± 2% after SI/reoxygenation injury in the control group. cGMP-inducing agents significantly decreased irreversible cell injury: the cGMP analog 8-bromo-cGMP (8-Br-cGMP, 10 nM) decreased it to 13 ± 1% (
p
|
---|---|
ISSN: | 0300-8428 1435-1803 |
DOI: | 10.1007/s00395-010-0097-0 |