Loading…
A minimal model of nanoparticle crystallization in polar solvents via steric effects
Motivated by recent experimental findings, we present here a minimal analytical model illustrating that the steric interactions among the ionic components can provide a simple, generic mechanism for like-charge crystallization in prototypical nanoparticle systems with counterions in polar solvents....
Saved in:
Published in: | The Journal of chemical physics 2010-08, Vol.133 (7), p.074704-074704 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motivated by recent experimental findings, we present here a minimal analytical model illustrating that the steric interactions among the ionic components can provide a simple, generic mechanism for like-charge crystallization in prototypical nanoparticle systems with counterions in polar solvents. In particular, the underlying steric interactions among these ionic components arise from the structural organization of the polar solvent molecules surrounding these ions as molecular dipole moments that may cooperatively enhance or counteract existing entropic depletion and electrostatic forces. Phenomenologically capturing these steric effects, we assume only the existence of a short-range pairwise Gaussian interaction, which has already been employed usefully for nanoparticles with hydrophillic surfaces or grafted-polymer coatings, among these ionic components (nanoparticles and counterions). The corresponding Gaussian interaction parameters characterize tunable interaction strengths. Making use of an analytically obtained effective pairwise potential between two nanoparticles, upon the contraction of counterions, we derive phase diagrams for nanoparticle systems of varying charge- and size-ratios as a function of particle densities, and observe crystallization for a range of parameters. We further demonstrate that our minimal model is compatible with the phenomenon of charge asymmetry. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.3469863 |