Loading…

Conjugated Polymer Nanoparticles for Drug Delivery and Imaging

We prepared a new conjugated polymer nanoparticle with the size of about 50 nm that is prepared by electrostatic assembly of cationic conjugated polymer PFO and anionic poly(l-glutamic acid) conjugated with anticancer drug doxorubicin (PFO/PG-Dox). The PFO exhibits good fluorescence quantum yield, p...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2010-08, Vol.2 (8), p.2429-2435
Main Authors: Feng, Xuli, Lv, Fengting, Liu, Libing, Tang, Hongwei, Xing, Chengfen, Yang, Qiong, Wang, Shu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prepared a new conjugated polymer nanoparticle with the size of about 50 nm that is prepared by electrostatic assembly of cationic conjugated polymer PFO and anionic poly(l-glutamic acid) conjugated with anticancer drug doxorubicin (PFO/PG-Dox). The PFO exhibits good fluorescence quantum yield, photostability, and little cytotoxicity to meet the essential requests for cell imaging. In PFO/PG-Dox nanoparticles, the fluorescence of PFO is highly quenched by Dox by electron transfer mechanism, and thus the PFO is in the fluorescence “turn-off’ state. After PFO/PG-Dox nanoparticles are exposed to carboxypeptidase or are taken up by cancer cells, the poly(l-glutamic acid) is hydrolysed to release the Dox, inducing the activation of PFO fluorescence to “turn-on” state. This multifunctional nanoparticle system can deliver Dox to targeted cancer cells and monitor the Dox release based on fluorescence “turn-on” signal of PFO, which concurrently images the cancer cells. The present work opens the door for new functional studies of conjugated polymer in simultaneous imaging and disease therapeutics.
ISSN:1944-8244
1944-8252
DOI:10.1021/am100435k