Loading…
Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments
Many triple-resonance experiments make use of one-bond heteronuclear scalar couplings toestablish connectivities among backbone and/or side-chain nuclei. In medium-sized(15-30 kDa) proteins, short transverse relaxation times of Calpha single-quantum stateslimit signal-to-noise (S/N) ratios. These re...
Saved in:
Published in: | Journal of biomolecular NMR 1997-01, Vol.9 (1), p.105-111 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 111 |
container_issue | 1 |
container_start_page | 105 |
container_title | Journal of biomolecular NMR |
container_volume | 9 |
creator | Swapna, G V Rios, C B Shang, Z Montelione, G T |
description | Many triple-resonance experiments make use of one-bond heteronuclear scalar couplings toestablish connectivities among backbone and/or side-chain nuclei. In medium-sized(15-30 kDa) proteins, short transverse relaxation times of Calpha single-quantum stateslimit signal-to-noise (S/N) ratios. These relaxation properties can be improved usingheteronuclear multiple-quantum coherences (HMQCs) instead of heteronuclear single-quantumcoherences (HSQCs) in the pulse sequence design. In slowly tumbling macromolecules, theseHMQCs can exhibit significantly better transverse relaxation properties than HSQCs.However, HMQC-type experiments also exhibit resonance splittings due to multiple two- andthree-bond homo- and heteronuclear scalar couplings. We describe here a family of pulsed-field gradient (PFG) HMQC-type triple-resonance experiments using simultaneous 1H and13C constant-time (CT) periods to eliminate the t1 dependence of these scalar couplingeffects. These simultaneous CT PFG-(HA)CANH and PFG-(HA)CA(CO)NH HMQC-typeexperiments exhibit sharper resonance line widths and often have better S/N ratios than thecorresponding HSQC-type experiments. Results on proteins ranging in size from 6 to 30 kDashow average methine CalphaH HMQC:HSQC enhancement factors of 1.10 +/- 0.15, withabout 40% of the cross peaks exhibiting better S/N ratios in the simultaneous CT-HMQCversions compared with the HSQC versions. |
doi_str_mv | 10.1023/A:1018683920602 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_749025698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>749025698</sourcerecordid><originalsourceid>FETCH-LOGICAL-p822-abb1d34cdb6cffcaf193f012e22dc2a4090f1bfe7a4efc01af63733b36cb6cd23</originalsourceid><addsrcrecordid>eNpdkc1u1TAQhS0EopfCmh2y2AALg-25cZLuooj2IlWURfeR49jgyrFT_1B4LN4Q09tuWI1m9J1zZjQIvWb0I6McPg1njLJOdNBzKih_gnasaYE0lLKnaEd73hDeQneCXqR0QyntOy6eo5MKd9AKvkN_hm1zVslsg8fB4LW4bDenyW2RPpcVO-s19jLGcGf9d3xn8w-c7D9Meh1KwuyApV8wgxGr4FMdZ5LtqnFS0slIVCg1oUr1z-DKfY71-Nv5BTkM4_D1qH5s349XH-oox_sdok7BS6801r82Haupz-klemakS_rVQz1F1-efr8cDuby6-DIOl2TrOCdyntkCe7XMQhmjpGE9GMq45nxRXO5pTw2bjW7lXhtFmTQCWoAZhKqKhcMpene03WK4LTrlabVJaeeOZ0_tvqe8EX1Xybf_kTehRF93mzrBQUDDoEJvHqAyr3qZtnqNjL-nx0_AX91PjM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862363513</pqid></control><display><type>article</type><title>Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments</title><source>Springer Link</source><creator>Swapna, G V ; Rios, C B ; Shang, Z ; Montelione, G T</creator><creatorcontrib>Swapna, G V ; Rios, C B ; Shang, Z ; Montelione, G T</creatorcontrib><description>Many triple-resonance experiments make use of one-bond heteronuclear scalar couplings toestablish connectivities among backbone and/or side-chain nuclei. In medium-sized(15-30 kDa) proteins, short transverse relaxation times of Calpha single-quantum stateslimit signal-to-noise (S/N) ratios. These relaxation properties can be improved usingheteronuclear multiple-quantum coherences (HMQCs) instead of heteronuclear single-quantumcoherences (HSQCs) in the pulse sequence design. In slowly tumbling macromolecules, theseHMQCs can exhibit significantly better transverse relaxation properties than HSQCs.However, HMQC-type experiments also exhibit resonance splittings due to multiple two- andthree-bond homo- and heteronuclear scalar couplings. We describe here a family of pulsed-field gradient (PFG) HMQC-type triple-resonance experiments using simultaneous 1H and13C constant-time (CT) periods to eliminate the t1 dependence of these scalar couplingeffects. These simultaneous CT PFG-(HA)CANH and PFG-(HA)CA(CO)NH HMQC-typeexperiments exhibit sharper resonance line widths and often have better S/N ratios than thecorresponding HSQC-type experiments. Results on proteins ranging in size from 6 to 30 kDashow average methine CalphaH HMQC:HSQC enhancement factors of 1.10 +/- 0.15, withabout 40% of the cross peaks exhibiting better S/N ratios in the simultaneous CT-HMQCversions compared with the HSQC versions.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1023/A:1018683920602</identifier><identifier>PMID: 20683762</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Experiments ; Resonance</subject><ispartof>Journal of biomolecular NMR, 1997-01, Vol.9 (1), p.105-111</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20683762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swapna, G V</creatorcontrib><creatorcontrib>Rios, C B</creatorcontrib><creatorcontrib>Shang, Z</creatorcontrib><creatorcontrib>Montelione, G T</creatorcontrib><title>Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><description>Many triple-resonance experiments make use of one-bond heteronuclear scalar couplings toestablish connectivities among backbone and/or side-chain nuclei. In medium-sized(15-30 kDa) proteins, short transverse relaxation times of Calpha single-quantum stateslimit signal-to-noise (S/N) ratios. These relaxation properties can be improved usingheteronuclear multiple-quantum coherences (HMQCs) instead of heteronuclear single-quantumcoherences (HSQCs) in the pulse sequence design. In slowly tumbling macromolecules, theseHMQCs can exhibit significantly better transverse relaxation properties than HSQCs.However, HMQC-type experiments also exhibit resonance splittings due to multiple two- andthree-bond homo- and heteronuclear scalar couplings. We describe here a family of pulsed-field gradient (PFG) HMQC-type triple-resonance experiments using simultaneous 1H and13C constant-time (CT) periods to eliminate the t1 dependence of these scalar couplingeffects. These simultaneous CT PFG-(HA)CANH and PFG-(HA)CA(CO)NH HMQC-typeexperiments exhibit sharper resonance line widths and often have better S/N ratios than thecorresponding HSQC-type experiments. Results on proteins ranging in size from 6 to 30 kDashow average methine CalphaH HMQC:HSQC enhancement factors of 1.10 +/- 0.15, withabout 40% of the cross peaks exhibiting better S/N ratios in the simultaneous CT-HMQCversions compared with the HSQC versions.</description><subject>Experiments</subject><subject>Resonance</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1TAQhS0EopfCmh2y2AALg-25cZLuooj2IlWURfeR49jgyrFT_1B4LN4Q09tuWI1m9J1zZjQIvWb0I6McPg1njLJOdNBzKih_gnasaYE0lLKnaEd73hDeQneCXqR0QyntOy6eo5MKd9AKvkN_hm1zVslsg8fB4LW4bDenyW2RPpcVO-s19jLGcGf9d3xn8w-c7D9Meh1KwuyApV8wgxGr4FMdZ5LtqnFS0slIVCg1oUr1z-DKfY71-Nv5BTkM4_D1qH5s349XH-oox_sdok7BS6801r82Haupz-klemakS_rVQz1F1-efr8cDuby6-DIOl2TrOCdyntkCe7XMQhmjpGE9GMq45nxRXO5pTw2bjW7lXhtFmTQCWoAZhKqKhcMpene03WK4LTrlabVJaeeOZ0_tvqe8EX1Xybf_kTehRF93mzrBQUDDoEJvHqAyr3qZtnqNjL-nx0_AX91PjM8</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Swapna, G V</creator><creator>Rios, C B</creator><creator>Shang, Z</creator><creator>Montelione, G T</creator><general>Springer Nature B.V</general><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>199701</creationdate><title>Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments</title><author>Swapna, G V ; Rios, C B ; Shang, Z ; Montelione, G T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p822-abb1d34cdb6cffcaf193f012e22dc2a4090f1bfe7a4efc01af63733b36cb6cd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Experiments</topic><topic>Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swapna, G V</creatorcontrib><creatorcontrib>Rios, C B</creatorcontrib><creatorcontrib>Shang, Z</creatorcontrib><creatorcontrib>Montelione, G T</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swapna, G V</au><au>Rios, C B</au><au>Shang, Z</au><au>Montelione, G T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments</atitle><jtitle>Journal of biomolecular NMR</jtitle><addtitle>J Biomol NMR</addtitle><date>1997-01</date><risdate>1997</risdate><volume>9</volume><issue>1</issue><spage>105</spage><epage>111</epage><pages>105-111</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>Many triple-resonance experiments make use of one-bond heteronuclear scalar couplings toestablish connectivities among backbone and/or side-chain nuclei. In medium-sized(15-30 kDa) proteins, short transverse relaxation times of Calpha single-quantum stateslimit signal-to-noise (S/N) ratios. These relaxation properties can be improved usingheteronuclear multiple-quantum coherences (HMQCs) instead of heteronuclear single-quantumcoherences (HSQCs) in the pulse sequence design. In slowly tumbling macromolecules, theseHMQCs can exhibit significantly better transverse relaxation properties than HSQCs.However, HMQC-type experiments also exhibit resonance splittings due to multiple two- andthree-bond homo- and heteronuclear scalar couplings. We describe here a family of pulsed-field gradient (PFG) HMQC-type triple-resonance experiments using simultaneous 1H and13C constant-time (CT) periods to eliminate the t1 dependence of these scalar couplingeffects. These simultaneous CT PFG-(HA)CANH and PFG-(HA)CA(CO)NH HMQC-typeexperiments exhibit sharper resonance line widths and often have better S/N ratios than thecorresponding HSQC-type experiments. Results on proteins ranging in size from 6 to 30 kDashow average methine CalphaH HMQC:HSQC enhancement factors of 1.10 +/- 0.15, withabout 40% of the cross peaks exhibiting better S/N ratios in the simultaneous CT-HMQCversions compared with the HSQC versions.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>20683762</pmid><doi>10.1023/A:1018683920602</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2738 |
ispartof | Journal of biomolecular NMR, 1997-01, Vol.9 (1), p.105-111 |
issn | 0925-2738 1573-5001 |
language | eng |
recordid | cdi_proquest_miscellaneous_749025698 |
source | Springer Link |
subjects | Experiments Resonance |
title | Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20multiple-quantum%20line%20narrowing%20with%20simultaneous%201H%20and%2013C%20constant-time%20scalar-coupling%20evolution%20in%20PFG-HACANH%20and%20PFG-HACA(CO)NH%20triple-resonance%20experiments&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Swapna,%20G%20V&rft.date=1997-01&rft.volume=9&rft.issue=1&rft.spage=105&rft.epage=111&rft.pages=105-111&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1023/A:1018683920602&rft_dat=%3Cproquest_pubme%3E749025698%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p822-abb1d34cdb6cffcaf193f012e22dc2a4090f1bfe7a4efc01af63733b36cb6cd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862363513&rft_id=info:pmid/20683762&rfr_iscdi=true |