Loading…

Intracellular distribution of lysosomal enzymes in the mouse pigment mutants pale ear and pallid

The size distribution of lysosomes was determined in kidney proximal tubule cells of two mouse pigment mutants, pale ear and pallid, which have an increase in kidney lysosomal enzyme content caused by a decreased rate of secretion of lysosomal enzymes into urine. Both mutations have larger lysosomes...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular biochemistry 1980-06, Vol.31 (2), p.89-95
Main Authors: Piccini, A E, Jahreis, G P, Novak, E K, Swank, R T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The size distribution of lysosomes was determined in kidney proximal tubule cells of two mouse pigment mutants, pale ear and pallid, which have an increase in kidney lysosomal enzyme content caused by a decreased rate of secretion of lysosomal enzymes into urine. Both mutations have larger lysosomes when compared with normal mice. However, neither mutant contains the giant lysosomes (up to 11 micron diameter) common to the well-characterized beige mutant, which has a kidney secretory defect similar to the pale ear and pallid mutants. Subcellular distribution studies, performed by the osmotic shock technique, likewise suggested differences among the pigment mutants. A very high content of soluble enzyme, indicative of lysosomal fragility during homogenization, was found in extracts from the beige mutation. By comparation, the percent of soluble enzyme became progressively lower in extracts of the pallid and pale ear mutants and was lowest in extracts from normal mice. All 3 pigment mutants had normal concentrations of osmotically resistant membrane-bound lysosomal enzymes. This indicates that the excess, non-secreted, lysosomal enzyme in all three pigment mutants likely is present in classical lysosomal organelles rather than in other non-lysosomal subcellular membrane fractions. The results also illustrate that mammalian mutants which exhibit lysosomal secretory rates can have strikingly different effects on morphology of lysosomes.
ISSN:0300-8177
1573-4919
DOI:10.1007/BF00240814