Loading…

Radially polarized functionally graded piezoelectric hollow cylinders as sensors and actuators

An axisymmetric electroelastic problem of hollow radially polarized piezoceramic cylinders made of functionally graded (FG) materials is analyzed. For the material properties of power-law profile, a closed-form solution is derived. For a general gradient variation, an analytic approach is suggested,...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, A, Solids A, Solids, 2010-07, Vol.29 (4), p.704-713
Main Authors: Li, Xian-Fang, Peng, Xu-Long, Lee, Kang Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An axisymmetric electroelastic problem of hollow radially polarized piezoceramic cylinders made of functionally graded (FG) materials is analyzed. For the material properties of power-law profile, a closed-form solution is derived. For a general gradient variation, an analytic approach is suggested, which reduces the problem to a Fredholm integral equation. Solving the resulting equation, the response of the electroelastic field can be determined. No severe limitation is required for varying material properties in this method. Numerical results of a cylindrical FG piezoelectric tube with PZT-5H as the inner surface ceramic are evaluated, and the distribution of the radial and circumferential stresses as well as the electric potential for piezoelectric sensors and actuators are presented graphically under electric and mechanical stimuli, respectively. Our results indicate that the electroelastic response in an FG piezoceramic tube with material properties decreasing when the radius increases becomes more obvious than that with material properties increasing. Moreover, the gradient index strongly affects the stress distribution and electric response. The obtained results are helpful for the design of annular cylindrical FG piezoelectric sensors/actuators.
ISSN:0997-7538
1873-7285
DOI:10.1016/j.euromechsol.2010.02.003