Loading…
Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation
We investigated the elimination routes for the 200 drugs that are sold most often by prescription count in the United States. The majority (78%) of the hepatically cleared drugs were found to be subject to oxidative metabolism via cytochromes P450 of the families 1, 2 and 3, with major contributions...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2008-11, Vol.392 (6), p.1093-1108 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated the elimination routes for the 200 drugs that are sold most often by prescription count in the United States. The majority (78%) of the hepatically cleared drugs were found to be subject to oxidative metabolism via cytochromes P450 of the families 1, 2 and 3, with major contributions from CYP3A4/5 (37% of drugs) followed by CYP2C9 (17%), CYP2D6 (15%), CYP2C19 (10%), CYP1A2 (9%), CYP2C8 (6%), and CYP2B6 (4%). Clinically well-established polymorphic CYPs (i.e., CYP2C9, CYP2C19, and CYP2D6) were involved in the metabolism of approximately half of those drugs, including (in particular) NSAIDs metabolized mainly by CYP2C9, proton-pump inhibitors metabolized by CYP2C19, and beta blockers and several antipsychotics and antidepressants metabolized by CYP2D6. In this review, we provide an up-to-date summary of the functional polymorphisms and aspects of the functional genomics of the major human drug-metabolizing cytochrome P450s, as well as their clinical significance. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-008-2291-6 |