Loading…

A Study of Ablation, Spatial, and Temporal Characteristics of Laser-Induced Plasmas Generated by Multiple Collinear Pulses

Multi-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear pulse configuration with time-integrating detection was performed on metallic samples in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with single-p...

Full description

Saved in:
Bibliographic Details
Published in:Applied spectroscopy 2010-02, Vol.64 (2), p.161-172
Main Authors: Galbács, G., Jedlinszki, N., Herrera, K., Omenetto, N., Smith, B. W., Winefordner, J. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear pulse configuration with time-integrating detection was performed on metallic samples in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with single-pulse excitation. Complementary experiments were also carried out on another LIBS setup using detection by an imaging spectrograph with high time resolution. The effects of laser bursts consisting of up to seven ns-range pulses from Nd-doped solid-state lasers operating at their fundamental wavelength and separated by 8.5–50 μs time gaps was studied. The ablation and emission characteristics of the generated plasmas were investigated using light profilometry, microscopy, plasma imaging, emission distribution mapping, time-resolved line emission monitoring, and plasma temperature calculations. The experimental data suggest that the two contributing processes mainly responsible for the signal enhancement effect are the plume reheating caused by the sequential laser pulses and, more dominantly, the increased material ablation attributed to the lower breakdown threshold for the preheated (molten) sample surface and/or the reduced background gas pressure behind the shockwave of preceding pulses.
ISSN:0003-7028
1943-3530
0003-7028
DOI:10.1366/000370210790619609